API

List of functions and classes in Himalaya.

Backend

Public functions in himalaya.backend.

set_backend

Set the backend using a global variable, and return the backend module.

get_backend

Get the current backend module.

ALL_BACKENDS

Built-in mutable sequence.



Kernel ridge

Public functions and classes in himalaya.kernel_ridge.

Estimators

Estimators compatible with the scikit-learn API.

KernelRidge

Kernel ridge regression.

KernelRidgeCV

Kernel ridge regression with efficient cross-validation over alpha.

WeightedKernelRidge

Weighted kernel ridge regression.

MultipleKernelRidgeCV

Multiple-kernel ridge regression with cross-validation.

Kernelizer

Transform tabular data into a kernel.

ColumnKernelizer

Applies transformers to columns of an array, ending with kernelizers.

make_column_kernelizer

Construct a ColumnKernelizer from the given transformers.

Solver functions

KERNEL_RIDGE_SOLVERS

solve_kernel_ridge_cv_eigenvalues

Solve kernel ridge regression with a grid search over alphas.

solve_kernel_ridge_eigenvalues

Solve kernel ridge regression using eigenvalues decomposition.

solve_kernel_ridge_gradient_descent

Solve kernel ridge regression using conjugate gradient.

solve_kernel_ridge_conjugate_gradient

Solve kernel ridge regression using conjugate gradient.

WEIGHTED_KERNEL_RIDGE_SOLVERS

solve_weighted_kernel_ridge_gradient_descent

Solve weighted kernel ridge regression using gradient descent.

solve_weighted_kernel_ridge_conjugate_gradient

Solve weighted kernel ridge regression using conjugate gradient.

solve_weighted_kernel_ridge_neumann_series

Solve weighted kernel ridge regression using Neumann series.

MULTIPLE_KERNEL_RIDGE_SOLVERS

solve_multiple_kernel_ridge_hyper_gradient

Solve bilinear kernel ridge regression with cross-validation.

solve_multiple_kernel_ridge_random_search

Solve multiple kernel ridge regression using random search.

Helpers

generate_dirichlet_samples

Generate samples from a Dirichlet distribution.

predict_weighted_kernel_ridge

Compute predictions, typically on a test set.

predict_and_score_weighted_kernel_ridge

Compute predictions, typically on a test set, and compute the score.

primal_weights_kernel_ridge

Compute the primal weights for kernel ridge regression.

primal_weights_weighted_kernel_ridge

Compute the primal weights for weighted kernel ridge regression.

Kernels

PAIRWISE_KERNEL_FUNCTIONS

linear_kernel

Compute the linear kernel between X and Y.

polynomial_kernel

Compute the polynomial kernel between X and Y.

rbf_kernel

Compute the rbf (gaussian) kernel between X and Y.

sigmoid_kernel

Compute the sigmoid kernel between X and Y.

cosine_similarity_kernel

Compute cosine similarity between samples in X and Y.

KernelCenterer

Center a kernel matrix.



Lasso

Public functions and classes in himalaya.lasso.

Estimators

Estimators compatible with the scikit-learn API.

SparseGroupLassoCV

Sparse group Lasso

Solver functions

solve_sparse_group_lasso

Solves the sparse group Lasso.

solve_sparse_group_lasso_cv

Solves the sparse group Lasso, selecting hyperparameters over cross-validation.



Ridge

Public functions and classes in himalaya.ridge.

Estimators

Estimators compatible with the scikit-learn API.

Ridge

Ridge regression.

RidgeCV

Ridge regression with efficient cross-validation over alpha.

GroupRidgeCV

Group ridge regression with cross-validation.

BandedRidgeCV

alias of himalaya.ridge._sklearn_api.GroupRidgeCV

ColumnTransformerNoStack

Applies transformers to columns of an array, and does not stack them.

make_column_transformer_no_stack

Construct a ColumnTransformerNoStack from the given transformers.

Solver functions

RIDGE_SOLVERS

solve_ridge_svd

Solve ridge regression using SVD decomposition.

solve_ridge_cv_svd

Solve ridge regression with a grid search over alphas.

GROUP_RIDGE_SOLVERS

BANDED_RIDGE_SOLVERS

solve_group_ridge_random_search

Solve group ridge regression using random search on the simplex.

solve_banded_ridge_random_search

Solve group ridge regression using random search on the simplex.



Other modules

Public functions and classes in other minor modules.

Progress bar

progress_bar.ProgressBar

Generate a command-line progress bar.

progress_bar.bar

Simple API for progress_bar.

Scoring functions

scoring.l2_neg_loss

L2 negative loss, computed for multiple predictions.

scoring.r2_score

R2 score, computed for multiple predictions (e.g.

scoring.correlation_score

Correlation score, computed for multiple predictions.

scoring.r2_score_split

Split the R2 score into individual components using the product measure.

scoring.r2_score_split_svd

Split the R2 score into individual components using relative weights.

scoring.correlation_score_split

Split the correlation score into individual components.

Utils

utils.compute_lipschitz_constants

Compute Lipschitz constants of gradients of linear regression problems.

utils.generate_multikernel_dataset

Utility to generate datasets for the gallery of examples.

Visualization

viz.plot_alphas_diagnostic

Plot a diagnostic plot for the selected alphas during cross-validation.