himalaya.kernel_ridge.solve_kernel_ridge_cv_eigenvalues¶
- himalaya.kernel_ridge.solve_kernel_ridge_cv_eigenvalues(K, Y, alphas=1.0, score_func=<function l2_neg_loss>, cv=5, fit_intercept=False, local_alpha=True, n_targets_batch=None, n_targets_batch_refit=None, n_alphas_batch=None, conservative=False, Y_in_cpu=False)[source]¶
- Solve kernel ridge regression with a grid search over alphas. - Parameters
- Karray of shape (n_samples, n_samples)
- Input kernel. 
- Yarray of shape (n_samples, n_targets)
- Target data. 
- alphasfloat or array of shape (n_alphas, )
- Range of ridge regularization parameter. 
- score_funccallable
- Function used to compute the score of predictions versus Y. 
- cvint or scikit-learn splitter
- Cross-validation splitter. If an int, KFold is used. 
- fit_interceptboolean
- Whether to fit an intercept. If False, K should be centered (see KernelCenterer), and Y must be zero-mean over samples. 
- local_alphabool
- If True, alphas are selected per target, else shared over all targets. 
- n_targets_batchint or None
- Size of the batch for over targets during cross-validation. Used for memory reasons. If None, uses all n_targets at once. 
- n_targets_batch_refitint or None
- Size of the batch for over targets during refit. Used for memory reasons. If None, uses all n_targets at once. 
- n_alphas_batchint or None
- Size of the batch for over alphas. Used for memory reasons. If None, uses all n_alphas at once. 
- conservativebool
- If True, when selecting the hyperparameter alpha, take the largest one that is less than one standard deviation away from the best. If False, take the best. 
- Y_in_cpubool
- If True, keep the target values - Yin CPU memory (slower).
 
- Returns
- best_alphasarray of shape (n_targets, )
- Selected best hyperparameter alphas. 
- dual_weightsarray of shape (n_samples, n_targets)
- Kernel ridge coefficients refit on the entire dataset, using selected best hyperparameters alpha. Always stored on CPU memory. 
- cv_scoresarray of shape (n_targets, )
- Cross-validation scores averaged over splits, for the best alpha.