himalaya.lasso.solve_sparse_group_lasso¶
- himalaya.lasso.solve_sparse_group_lasso(X, Y, groups=None, l21_reg=0.05, l1_reg=0.05, max_iter=300, tol=0.0001, momentum=True, initial_coef=None, lipschitz=None, n_targets_batch=None, progress_bar=True, debug=False)[source]¶
Solves the sparse group Lasso.
- Parameters
- Xarray of shape (n_samples, n_features)
Input features.
- Yarray of shape (n_samples, n_targets)
Target data.
- groupsarray of shape (n_features, ) or None
Encoding of the group of each feature. If None, all features are gathered in one group, and the problem is equivalent to the Lasso.
- l21_regfloat, or array of shape (n_targets, )
Regularization parameter for the group Lasso.
- l1_regfloat, or array of shape (n_targets, )
Regularization parameter for the Lasso.
- max_iterint > 0
Maximum number of iterations.
- tolfloat > 0
Tolerance of the stopping criterion.
- momentumbool
If True, use acceleration in the projected gradient descent.
- initial_coefNone, or array of shape (n_features, n_targets)
Initial value for the projected gradient descent.
- lipschitzfloat or None
Lipschitz constant of the gradient. If None, it will be estimated from X using power iterations.
- n_targets_batchint or None
Size of the batch for computing predictions. Used for memory reasons. If None, uses all n_targets at once.
- progress_barbool
If True, display a progress bar over batches and iterations.
- debugbool
If True, compute the objective function at each iteration, and return the list of results (of the last batch) along with the final coefficients.
- Returns
- coefarray of shape (n_features, n_targets)
Coefficient of the linear model.