Changelog

Development Version

Version 0.4.0

(June 2022)

  • DOC explain how to implement a winner-take-all model.

  • FIX comply with most recent scikit-learn’s check_estimator.

  • FIX avoid an indexing error in the hypergradient solver, when early stopping after different numbers of iterations for different batches.

Version 0.3.6

(April 2022)

  • DOC improve documentation website, add estimator flowchart.

  • TST improve test robustness.

  • ENH add batching over targets in predict_weighted_kernel_ridge().

  • ENH add solver="auto" in KernelRidge, which switches solver based on the presence of a separate alpha per target.

Version 0.3.5

(February 2022)

  • MNT speed up examples on CPU, to build the doc faster on github actions.

  • ENH add batching over targets in Ridge, KernelRidge, and WeightedKernelRidge.

  • ENH add warnings to guide the user between using Ridge or KernelRidge.

  • ENH add user-friendly errors when the number of samples is inconsistent.

  • ENH raise ValueError if the indices in cross-validation exceed number of samples.

Version 0.3.4

(November 2021)

  • FIX Ridge with n_samples < n_targets.

  • FIX update of alphas when local_alpha=False in MultipleKernelRidgeCV.

  • EXA refactor examples with new generate_multikernel_dataset() function.

  • MNT add github actions for running tests, building and publishing the doc, and publishing to PyPI.

Version 0.3.3

(November 2021)

Version 0.3.2

(November 2021)

Version 0.3.1

(September 2021)

  • MNT Rename BandedRidgeCV into GroupRidgeCV (both names are available).

  • ENH improve robustness to noise in the cross-validation scores.

  • ENH start the random search with equal weights in MultipleKernelRidgeCV and GroupRidgeCV.

  • FIX remove deprecation warnings with pytorch 1.8.

  • TST improve test coverage.

Version 0.3.0

(April 2021)

Version 0.2.0

(December 2020)

Version 0.1.0

(March 2020)