Changelog¶
Development Version¶
Version 0.4.10¶
(February 2026)
FIX device mismatch when
Y_in_cpu=Truewith GPU backend inRidgeCVrandom search.ENH add iteration rate and estimated time to completion to progress bar.
ENH change ETA format to hh:mm:ss for better readability.
Version 0.4.9¶
(January 2026)
FIX out-of-bounds error when convergence occurs at last iteration.
Version 0.4.8¶
(August 2025)
MNT maintenance release.
Version 0.4.7¶
(August 2025)
FIX estimators to pass scikit-learn checks with scikit-learn >= 1.6.
MNT run tests on macOS.
Version 0.4.6¶
(June 2024)
FIX
ComplexWarningfor numpy >= 1.26.MNT use codecov token.
Version 0.4.5¶
(June 2024)
FIX update ~himalaya.kernel_ridge.ColumnKernelizer for scikit-learn versions >= 1.5
Version 0.4.4¶
(March 2024)
FIX cupy boolean dtype
Version 0.4.3¶
(March 2024)
FIX update ~himalaya.kernel_ridge.ColumnKernelizer for scikit-learn versions > 1.4
Version 0.4.2¶
(February 2023)
ENH add better error message when
torch.linalg.eighfails.ENH add
solve_kernel_ridge_cv_svd()solver. It can be used with:class:~himalaya.kernel_ridge.KernelRidgeCV(solver="svd").
Version 0.4.1¶
(February 2023)
FIX avoid error in
MultipleKernelRidgeCVwithsolver_params(return_alphas=True).ENH add
fit_interceptinMultipleKernelRidgeCV.FIX torch 1.13.1 requires tensor masks to be on the same device as tensors.
Version 0.4.0¶
(June 2022)
DOC explain how to implement a winner-take-all model.
FIX comply with most recent scikit-learn’s check_estimator.
FIX avoid an indexing error in the hypergradient solver, when early stopping after different numbers of iterations for different batches.
Version 0.3.6¶
(April 2022)
DOC improve documentation website, add estimator flowchart.
TST improve test robustness.
ENH add batching over targets in
predict_weighted_kernel_ridge().ENH add
solver="auto"inKernelRidge, which switches solver based on the presence of a separate alpha per target.
Version 0.3.5¶
(February 2022)
MNT speed up examples on CPU, to build the doc faster on github actions.
ENH add batching over targets in
Ridge,KernelRidge, andWeightedKernelRidge.ENH add warnings to guide the user between using
RidgeorKernelRidge.ENH add user-friendly errors when the number of samples is inconsistent.
ENH raise ValueError if the indices in cross-validation exceed number of samples.
Version 0.3.4¶
(November 2021)
FIX
Ridgewithn_samples < n_targets.FIX update of alphas when
local_alpha=FalseinMultipleKernelRidgeCV.EXA refactor examples with new
generate_multikernel_dataset()function.MNT add github actions for running tests, building and publishing the doc, and publishing to PyPI.
Version 0.3.3¶
(November 2021)
FIX
KernelRidgewithn_samples < n_targets.FIX random search with single alpha in
MultipleKernelRidgeCV.
Version 0.3.2¶
(November 2021)
ENH add
r2_score_split_svd()scoring function.ENH add
correlation_score_split()scoring function.ENH add
splitparameter to thescoremethod inWeightedKernelRidge,MultipleKernelRidgeCV, andGroupRidgeCV.ENH add
force_cpuparameter in all estimators.FIX remove deprecation warnings for cupy v9.
DOC mention that pytorch 1.9+ is preferred.
Version 0.3.1¶
(September 2021)
MNT Rename
BandedRidgeCVintoGroupRidgeCV(both names are available).ENH improve robustness to noise in the cross-validation scores.
ENH start the random search with equal weights in
MultipleKernelRidgeCVandGroupRidgeCV.FIX remove deprecation warnings with pytorch 1.8.
TST improve test coverage.
Version 0.3.0¶
(April 2021)
ENH add
fit_interceptparameter inRidge,RidgeCV, andBandedRidgeCV.ENH add
fit_interceptparameter inKernelRidge,KernelRidgeCV,solve_multiple_kernel_ridge_gradient_descent(), andsolve_multiple_kernel_ridge_random_search().ENH add
KernelCenterer.ENH allow change of backend midscript.
ENH Add option to return selected alpha values in
solve_multiple_kernel_ridge_random_search().
Version 0.2.0¶
(December 2020)
Version 0.1.0¶
(March 2020)