himalaya.ridge.Ridge¶
- class himalaya.ridge.Ridge(alpha=1, fit_intercept=False, solver='svd', solver_params=None, force_cpu=False)[source]¶
- Ridge regression. - Solve the ridge regression: - b* = argmin_b ||X @ b - Y||^2 + alpha ||b||^2. - Parameters
- alphafloat, or array of shape (n_targets, )
- L2 regularization parameter. 
- fit_interceptboolean
- Whether to fit an intercept. If False, X and Y must be zero-mean over samples. 
- solverstr
- Algorithm used during the fit, in {“svd”}. 
- solver_paramsdict or None
- Additional parameters for the solver. See more details in the docstring of the function: - Ridge.ALL_SOLVERS[solver]
- force_cpubool
- If True, computations will be performed on CPU, ignoring the current backend. If False, use the current backend. 
 
 - Examples - >>> from himalaya.ridge import Ridge >>> import numpy as np >>> n_samples, n_features, n_targets = 10, 5, 3 >>> X = np.random.randn(n_samples, n_features) >>> Y = np.random.randn(n_samples, n_targets) >>> model = Ridge() >>> model.fit(X, Y) Ridge() - Attributes
- coef_array of shape (n_features) or (n_features, n_targets)
- Ridge coefficients. 
- intercept_float or array of shape (n_targets, )
- Intercept. Only present if fit_intercept is True. 
- n_features_in_int
- Number of features used during the fit. 
- dtype_str
- Dtype of input data. 
 
 - Methods - fit(X[, y])- Fit the model. - get_params([deep])- Get parameters for this estimator. - predict(X)- Predict using the model. - score(X, y)- Return the coefficient of determination R^2 of the prediction. - set_params(**params)- Set the parameters of this estimator.