himalaya.ridge.Ridge¶
- class himalaya.ridge.Ridge(alpha=1, fit_intercept=False, solver='svd', solver_params=None, force_cpu=False)[source]¶
Ridge regression.
Solve the ridge regression:
b* = argmin_b ||X @ b - Y||^2 + alpha ||b||^2.
- Parameters
- alphafloat, or array of shape (n_targets, )
L2 regularization parameter.
- fit_interceptboolean
Whether to fit an intercept. If False, X and Y must be zero-mean over samples.
- solverstr
Algorithm used during the fit, in {“svd”}.
- solver_paramsdict or None
Additional parameters for the solver. See more details in the docstring of the function:
Ridge.ALL_SOLVERS[solver]
- force_cpubool
If True, computations will be performed on CPU, ignoring the current backend. If False, use the current backend.
Examples
>>> from himalaya.ridge import Ridge >>> import numpy as np >>> n_samples, n_features, n_targets = 10, 5, 3 >>> X = np.random.randn(n_samples, n_features) >>> Y = np.random.randn(n_samples, n_targets) >>> model = Ridge() >>> model.fit(X, Y) Ridge()
- Attributes
- coef_array of shape (n_features) or (n_features, n_targets)
Ridge coefficients.
- intercept_float or array of shape (n_targets, )
Intercept. Only present if fit_intercept is True.
- n_features_in_int
Number of features used during the fit.
- dtype_str
Dtype of input data.
Methods
fit
(X[, y])Fit the model.
get_params
([deep])Get parameters for this estimator.
predict
(X)Predict using the model.
score
(X, y)Return the coefficient of determination R^2 of the prediction.
set_params
(**params)Set the parameters of this estimator.