himalaya.lasso.SparseGroupLassoCV¶
- class himalaya.lasso.SparseGroupLassoCV(groups=None, l1_regs=[0], l21_regs=[0], solver='proximal_gradient', solver_params=None, cv=5, force_cpu=False)[source]¶
Sparse group Lasso
Solved with hyperparameter grid-search over cross-validation.
- Parameters
- groupsarray of shape (n_features, ) or None
Encoding of the group of each feature. If None, all features are gathered in one group, and the problem is equivalent to the Lasso.
- l21_regsarray of shape (n_l21_regs, )
All the Group Lasso regularization parameter tested.
- l1_regsarray of shape (n_l1_regs, )
All the Lasso regularization parameter tested.
- solverstr
Algorithm used during the fit, “proximal_gradient” only for now.
- solver_paramsdict or None
Additional parameters for the solver. See more details in the docstring of the function:
SparseGroupLassoCV.ALL_SOLVERS[solver]
- cvint or scikit-learn splitter
Cross-validation splitter. If an int, KFold is used.
- force_cpubool
If True, computations will be performed on CPU, ignoring the current backend. If False, use the current backend.
Examples
>>> from himalaya.lasso import SparseGroupLassoCV >>> import numpy as np >>> n_samples, n_features, n_targets = 10, 5, 3 >>> X = np.random.randn(n_samples, n_features) >>> Y = np.random.randn(n_samples, n_targets) >>> clf = SparseGroupLassoCV() >>> clf.fit(X, Y) SparseGroupLassoCV()
- Attributes
- coef_array of shape (n_samples) or (n_samples, n_targets)
Coefficient of the linear model. Always on CPU.
- best_l21_reg_array of shape (n_targets, )
Best hyperparameter per target.
- best_l1_reg_array of shape (n_targets, )
Best hyperparameter per target.
- cv_scores_array of shape (n_l21_regs * n_l1_regs, n_targets)
Cross-validation scores of all tested hyperparameters. The scores are computed with r2_score.
- n_features_in_int
Number of features used during the fit.
Methods
fit
(X, y)Fit the model
get_params
([deep])Get parameters for this estimator.
predict
(X)Predict using the model.
score
(X, y)Return the coefficient of determination R^2 of the prediction.
set_params
(**params)Set the parameters of this estimator.