himalaya.kernel_ridge.KernelCenterer¶
- class himalaya.kernel_ridge.KernelCenterer(force_cpu=False)[source]¶
Center a kernel matrix.
Adapt sklearn.preprocessing.KernelCenterer to use other backends.
Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False).
- Parameters
- force_cpubool
If True, computations will be performed on CPU, ignoring the current backend. If False, use the current backend.
Examples
>>> from himalaya.kernel_ridge import KernelCenterer >>> from himalaya.kernel_ridge import pairwise_kernels >>> X = [[ 1., -2., 2.], ... [ -2., 1., 3.], ... [ 4., 1., -2.]] >>> K = pairwise_kernels(X, metric='linear') >>> K array([[ 9., 2., -2.], [ 2., 14., -13.], [ -2., -13., 21.]]) >>> transformer = KernelCenterer().fit(K) >>> transformer KernelCenterer() >>> transformer.transform(K) array([[ 5., 0., -5.], [ 0., 14., -14.], [ -5., -14., 19.]])
- Attributes
- K_fit_rows_array of shape (n_samples,)
Average of each column of kernel matrix.
- K_fit_all_float
Average of kernel matrix.
Methods
fit
(K[, y])Fit KernelCenterer
fit_transform
(X[, y])Fit to data, then transform it.
get_params
([deep])Get parameters for this estimator.
set_params
(**params)Set the parameters of this estimator.
transform
(K[, copy])Center kernel matrix.