Changelog ========= Development Version ------------------- - Version 0.4.0 ------------- (*June 2022*) - DOC explain how to implement a winner-take-all model. - FIX comply with most recent scikit-learn's check_estimator. - FIX avoid an indexing error in the hypergradient solver, when early stopping after different numbers of iterations for different batches. Version 0.3.6 ------------- (*April 2022*) - DOC improve documentation website, add estimator flowchart. - TST improve test robustness. - ENH add batching over targets in :func:`~himalaya.kernel_ridge.predict_weighted_kernel_ridge`. - ENH add ``solver="auto"`` in :class:`~himalaya.kernel_ridge.KernelRidge`, which switches solver based on the presence of a separate alpha per target. Version 0.3.5 ------------- (*February 2022*) - MNT speed up examples on CPU, to build the doc faster on github actions. - ENH add batching over targets in :class:`~himalaya.ridge.Ridge`, :class:`~himalaya.kernel_ridge.KernelRidge`, and :class:`~himalaya.kernel_ridge.WeightedKernelRidge`. - ENH add warnings to guide the user between using :class:`~himalaya.ridge.Ridge` or :class:`~himalaya.kernel_ridge.KernelRidge`. - ENH add user-friendly errors when the number of samples is inconsistent. - ENH raise ValueError if the indices in cross-validation exceed number of samples. Version 0.3.4 ------------- (*November 2021*) - FIX :class:`~himalaya.ridge.Ridge` with ``n_samples < n_targets``. - FIX update of alphas when ``local_alpha=False`` in :class:`~himalaya.kernel_ridge.MultipleKernelRidgeCV`. - EXA refactor examples with new :func:`~himalaya.utils.generate_multikernel_dataset` function. - MNT add github actions for running tests, building and publishing the doc, and publishing to PyPI. Version 0.3.3 ------------- (*November 2021*) - FIX :class:`~himalaya.kernel_ridge.KernelRidge` with ``n_samples < n_targets``. - FIX random search with single alpha in :class:`~himalaya.kernel_ridge.MultipleKernelRidgeCV`. Version 0.3.2 ------------- (*November 2021*) - ENH add :func:`~himalaya.scoring.r2_score_split_svd` scoring function. - ENH add :func:`~himalaya.scoring.correlation_score_split` scoring function. - ENH add ``split`` parameter to the ``score`` method in :class:`~himalaya.kernel_ridge.WeightedKernelRidge`, :class:`~himalaya.kernel_ridge.MultipleKernelRidgeCV`, and :class:`~himalaya.ridge.GroupRidgeCV`. - ENH add ``force_cpu`` parameter in all estimators. - FIX remove deprecation warnings for cupy v9. - DOC mention that pytorch 1.9+ is preferred. Version 0.3.1 ------------- (*September 2021*) - MNT Rename :class:`~himalaya.ridge.BandedRidgeCV` into :class:`~himalaya.ridge.GroupRidgeCV` (both names are available). - ENH improve robustness to noise in the cross-validation scores. - ENH start the random search with equal weights in :class:`~himalaya.kernel_ridge.MultipleKernelRidgeCV` and :class:`~himalaya.ridge.GroupRidgeCV`. - FIX remove deprecation warnings with pytorch 1.8. - TST improve test coverage. Version 0.3.0 ------------- (*April 2021*) - ENH add ``fit_intercept`` parameter in :class:`~himalaya.ridge.Ridge`, :class:`~himalaya.ridge.RidgeCV`, and :class:`~himalaya.ridge.BandedRidgeCV`. - ENH add ``fit_intercept`` parameter in :class:`~himalaya.kernel_ridge.KernelRidge`, :class:`~himalaya.kernel_ridge.KernelRidgeCV`, :func:`~himalaya.kernel_ridge.solve_multiple_kernel_ridge_gradient_descent`, and :func:`~himalaya.kernel_ridge.solve_multiple_kernel_ridge_random_search`. - ENH add :class:`~himalaya.kernel_ridge.KernelCenterer`. - ENH allow change of backend midscript. - ENH Add option to return selected alpha values in :func:`~himalaya.kernel_ridge.solve_multiple_kernel_ridge_random_search`. Version 0.2.0 ------------- (*December 2020*) Version 0.1.0 ------------- (*March 2020*)