Source code for himalaya.kernel_ridge._kernelizer

from sklearn.compose import ColumnTransformer
from sklearn.compose import make_column_selector  # noqa
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.utils.validation import check_is_fitted
from sklearn.pipeline import make_pipeline, _name_estimators

from ..backend import get_backend
from ..backend import force_cpu_backend
from ..validation import check_array
from ..validation import _get_string_dtype

from ._kernels import pairwise_kernels
from ._kernels import PAIRWISE_KERNEL_FUNCTIONS


[docs]class Kernelizer(TransformerMixin, BaseEstimator): """Transform tabular data into a kernel. Parameters ---------- kernel : str or callable, default="linear" Kernel mapping. Available kernels are: 'linear', 'polynomial, 'poly', 'rbf', 'sigmoid', 'cosine', or 'precomputed'. Set to 'precomputed' in order to pass a precomputed kernel matrix to the estimator methods instead of samples. A callable should accept two arguments and the keyword arguments passed to this object as kernel_params, and should return a floating point number. kernel_params : dict or None Additional parameters for the kernel function. See more details in the docstring of the function: Kernelizer.ALL_KERNELS[kernel] force_cpu : bool If True, computations will be performed on CPU, ignoring the current backend. If False, use the current backend. Attributes ---------- X_fit_ : array of shape (n_samples, n_features) Training data. If kernel == "precomputed" this is None. n_features_in_ : int Number of features (or number of samples if kernel == "precomputed") used during the fit. dtype_ : str Dtype of input data. Examples -------- >>> from himalaya.kernel_ridge import Kernelizer >>> import numpy as np >>> n_samples, n_features, n_targets = 10, 5, 3 >>> X = np.random.randn(n_samples, n_features) >>> model = Kernelizer() >>> model.fit_transform(X).shape (10, 10) """ ALL_KERNELS = PAIRWISE_KERNEL_FUNCTIONS kernelizer = True def __init__(self, kernel="linear", kernel_params=None, force_cpu=False): self.kernel = kernel self.kernel_params = kernel_params self.force_cpu = force_cpu @force_cpu_backend def fit_transform(self, X, y=None): """Compute the kernel on the training set. Parameters ---------- X : array of shape (n_samples, n_features) Training data. If kernel == "precomputed" this is instead a precomputed kernel array of shape (n_samples, n_samples). y : array of shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- K : array of shape (n_samples, n_samples) Kernel of the input data. """ accept_sparse = False if self.kernel == "precomputed" else ("csr", "csc") X = check_array(X, accept_sparse=accept_sparse, ndim=2) self.X_fit_ = _to_cpu(X) if self.kernel != "precomputed" else None self.dtype_ = _get_string_dtype(X) self.n_features_in_ = X.shape[1] K = self._get_kernel(X) return K @force_cpu_backend def fit(self, X, y=None): """Compute the kernel on the training set. Parameters ---------- X : array of shape (n_samples, n_features) Training data. If kernel == "precomputed" this is instead a precomputed kernel array of shape (n_samples, n_samples). y : array of shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- self : returns an instance of self. """ self.fit_transform(X, y) return self @force_cpu_backend def transform(self, X): """Compute the kernel on any data set. Parameters ---------- X : array of shape (n_samples_transform, n_features) Training data. If kernel == "precomputed" this is instead a precomputed kernel array of shape (n_samples_transform, n_samples_fit). Returns ------- K : array of shape (n_samples_transform, n_samples_fit) Kernel of the input data. """ check_is_fitted(self) accept_sparse = False if self.kernel == "precomputed" else ("csr", "csc") X = check_array(X, dtype=self.dtype_, accept_sparse=accept_sparse, ndim=2) if X.shape[1] != self.n_features_in_: raise ValueError( 'Different number of features in X than during fit.') K = self._get_kernel(X, self.X_fit_) return K def _get_kernel(self, X, Y=None): """Helper function to get the kernel.""" backend = get_backend() kernel_params = self.kernel_params or {} kernel = pairwise_kernels(X, Y, metric=self.kernel, **kernel_params) return backend.asarray(kernel) def get_X_fit(self): """Helper to get the input data X seen during the fit. Returns ------- X : array of shape (n_samples, n_features) Input array for the kernelizer. """ check_is_fitted(self) return self.X_fit_ @property def _pairwise(self): return self.kernel == "precomputed"
[docs]class ColumnKernelizer(ColumnTransformer): """Applies transformers to columns of an array, ending with kernelizers. This estimator allows different columns or column subsets of the input to be transformed separately. Each transformer pipeline either ends with a kernelizer, or a linear kernelizer is added at the end. The different kernels generated are then stacked together to be used e.g. in a MultipleKernelRidgeCV(kernels="precomputed"). This is useful to perform separate transformations and kernels on different feature spaces. Warning : This class does not perfectly abide by scikit-learn's API. Indeed, it returns stacked kernels of shape (n_kernels, n_samples, n_samples), while scikit-learn's API only allows arrays of shape (n_samples, n_samples) or (n_samples, n_features). This class is intended to be used in a scikit-learn pipeline *just* before a MultipleKernelRidgeCV(kernels="precomputed"). Parameters ---------- transformers : list of tuples List of (name, transformer, columns) tuples specifying the transformer objects to be applied to subsets of the data. name : str Like in Pipeline and FeatureUnion, this allows the transformer and its parameters to be set using ``set_params`` and searched in grid search. transformer : {'drop', 'passthrough'} or estimator Estimator must support ``fit`` and ``transform``. Special-cased strings 'drop' and 'passthrough' are accepted as well, to indicate to drop the columns or to pass them through untransformed, respectively. If the transformer does not return a kernel (as informed by the attribute kernelizer=True), a linear kernelizer is applied after the transformer. columns : str, array-like of str, int, array-like of int, \ array-like of bool, slice or callable Indexes the data on its second axis. Integers are interpreted as positional columns, while strings can reference DataFrame columns by name. A scalar string or int should be used where ``transformer`` expects X to be a 1d array-like (vector), otherwise a 2d array will be passed to the transformer. A callable is passed the input data `X` and can return any of the above. To select multiple columns by name or dtype, you can use :obj:`make_column_selector`. remainder : {'drop', 'passthrough'} or estimator, default='drop' By default, only the specified columns in `transformers` are transformed and combined in the output, and the non-specified columns are dropped. (default of ``'drop'``). By specifying ``remainder='passthrough'``, all remaining columns that were not specified in `transformers` will be automatically passed through. This subset of columns is concatenated with the output of the transformers. By setting ``remainder`` to be an estimator, the remaining non-specified columns will use the ``remainder`` estimator. The estimator must support ``fit`` and ``transform``. Note that using this feature requires that the DataFrame columns input at ``fit`` and ``transform`` have identical order. n_jobs : int, default=None Number of jobs to run in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. n_jobs does not work with GPU backends. transformer_weights : dict, default=None Multiplicative weights for features per transformer. The output of the transformer is multiplied by these weights. Keys are transformer names, values the weights. verbose : bool, default=False If True, the time elapsed while fitting each transformer will be printed as it is completed. force_cpu : bool If True, computations will be performed on CPU, ignoring the current backend. If False, use the current backend. Attributes ---------- transformers_ : list The collection of fitted transformers as tuples of (name, fitted_transformer, column). `fitted_transformer` can be an estimator, 'drop', or 'passthrough'. In case there were no columns selected, this will be the unfitted transformer. If there are remaining columns, the final element is a tuple of the form: ('remainder', transformer, remaining_columns) corresponding to the ``remainder`` parameter. If there are remaining columns, then ``len(transformers_)==len(transformers)+1``, otherwise ``len(transformers_)==len(transformers)``. named_transformers_ : :class:`~sklearn.utils.Bunch` Read-only attribute to access any transformer by given name. Keys are transformer names and values are the fitted transformer objects. n_features_in_ : int Number of features (or number of samples if kernel == "precomputed") used during the fit. sparse_output_ : False Notes ----- The order of the columns in the transformed feature matrix follows the order of how the columns are specified in the `transformers` list. Columns of the original feature matrix that are not specified are dropped from the resulting transformed feature matrix, unless specified in the `passthrough` keyword. Those columns specified with `passthrough` are added at the right to the output of the transformers. See also -------- himalaya.kernel_ridge.make_column_kernelizer : convenience function for combining the outputs of multiple kernelizer objects applied to column subsets of the original feature space. sklearn.compose.make_column_selector : convenience function for selecting columns based on datatype or the columns name with a regex pattern. Examples -------- >>> import numpy as np >>> from himalaya.kernel_ridge import ColumnKernelizer >>> from himalaya.kernel_ridge import Kernelizer >>> ck = ColumnKernelizer( ... [("kernel_1", Kernelizer(kernel="linear"), [0, 1, 2]), ... ("kernel_2", Kernelizer(kernel="polynomial"), slice(3, 5))]) >>> X = np.array([[0., 1., 2., 2., 3.], [0., 2., 0., 0., 3.], [0., 0., 1., 0., 3.], ... [1., 1., 0., 1., 2.]]) >>> # Kernelize separately the first three columns and the last two >>> # columns, creating two kernels of shape (n_samples, n_samples). >>> ck.fit_transform(X).shape (2, 4, 4) """ # This is not a kernelizer, since it returns multiple kernels kernelizer = False def __init__(self, transformers, remainder='drop', n_jobs=None, transformer_weights=None, verbose=False, force_cpu=False): self.transformers = transformers self.remainder = remainder self.sparse_threshold = 0 self.n_jobs = n_jobs self.transformer_weights = transformer_weights self.verbose = verbose self.force_cpu = force_cpu def _iter(self, fitted=False, *args, **kwargs): """ Generate (name, trans, column, weight) tuples. Add a default (linear) Kernelizer to any transformer that does not end with a Kernelizer. """ for name, trans, column, weight in super()._iter( fitted=fitted, *args, **kwargs): if not fitted: if trans == 'drop': pass elif trans == 'passthrough': trans = Kernelizer() elif not _end_with_a_kernel(trans): trans = make_pipeline(trans, Kernelizer()) yield (name, trans, column, weight) def _hstack(self, Xs): """Stack the kernels. In ColumnTransformer, this methods stacks Xs horizontally. Here instead, we stack all kernels in a new dimension. Parameters ---------- Ks : array of shape (n_kernels, n_samples, n_samples) """ backend = get_backend() return backend.stack(Xs) fit = force_cpu_backend(ColumnTransformer.fit) fit_transform = force_cpu_backend(ColumnTransformer.fit_transform) transform = force_cpu_backend(ColumnTransformer.transform) def get_X_fit(self): """Helper to get the input data X seen during the fit. Returns ------- Xs : list of arrays of shape (n_samples, n_features_i) Input arrays for each kernelizer. """ check_is_fitted(self) Xs = [] for (_, trans, _, _) in self._iter(fitted=True, replace_strings=True): if hasattr(trans, "get_X_fit"): X = trans.get_X_fit() else: X = trans[-1].get_X_fit() Xs.append(X) return Xs
[docs]def make_column_kernelizer(*transformers, **kwargs): """Construct a ColumnKernelizer from the given transformers. This is a shorthand for the ColumnKernelizer constructor; it does not require, and does not permit, naming the transformers. Instead, they will be given names automatically based on their types. It also does not allow weighting with ``transformer_weights``. Parameters ---------- *transformers : tuples Tuples of the form (transformer, columns) specifying the transformer objects to be applied to subsets of the data. transformer : {'drop', 'passthrough'} or estimator Estimator must support ``fit`` and ``transform``. Special-cased strings 'drop' and 'passthrough' are accepted as well, to indicate to drop the columns or to pass them through untransformed, respectively. If the transformer does not return a kernel (as informed by the attribute kernelizer=True), a linear kernelizer is applied after the transformer. columns : str, array-like of str, int, array-like of int, slice, \ array-like of bool or callable Indexes the data on its second axis. Integers are interpreted as positional columns, while strings can reference DataFrame columns by name. A scalar string or int should be used where ``transformer`` expects X to be a 1d array-like (vector), otherwise a 2d array will be passed to the transformer. A callable is passed the input data `X` and can return any of the above. To select multiple columns by name or dtype, you can use :obj:`make_column_selector`. remainder : {'drop', 'passthrough'} or estimator, default='drop' By default, only the specified columns in `transformers` are transformed and combined in the output, and the non-specified columns are dropped. (default of ``'drop'``). By specifying ``remainder='passthrough'``, all remaining columns that were not specified in `transformers` will be automatically passed through. This subset of columns is concatenated with the output of the transformers. By setting ``remainder`` to be an estimator, the remaining non-specified columns will use the ``remainder`` estimator. The estimator must support ``fit`` and ``transform``. n_jobs : int, default=None Number of jobs to run in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. n_jobs does not work with with GPU backends. verbose : bool, default=False If True, the time elapsed while fitting each transformer will be printed as it is completed. force_cpu : bool If True, computations will be performed on CPU, ignoring the current backend. If False, use the current backend. Returns ------- column_kernelizer : ColumnKernelizer See also -------- himalaya.kernel_ridge.ColumnKernelizer : Class that allows combining the outputs of multiple transformer objects used on column subsets of the data into a single feature space. Examples -------- >>> import numpy as np >>> from himalaya.kernel_ridge import make_column_kernelizer >>> from himalaya.kernel_ridge import Kernelizer >>> ck = make_column_kernelizer( ... (Kernelizer(kernel="linear"), [0, 1, 2]), ... (Kernelizer(kernel="polynomial"), slice(3, 5))) >>> X = np.array([[0., 1., 2., 2., 3.], [0., 2., 0., 0., 3.], [0., 0., 1., 0., 3.], ... [1., 1., 0., 1., 2.]]) >>> # Kernelize separately the first three columns and the last two >>> # columns, creating two kernels of shape (n_samples, n_samples). >>> ck.fit_transform(X).shape (2, 4, 4) """ # transformer_weights keyword is not passed through because the user # would need to know the automatically generated names of the transformers n_jobs = kwargs.pop('n_jobs', None) remainder = kwargs.pop('remainder', 'drop') verbose = kwargs.pop('verbose', False) force_cpu = kwargs.pop('force_cpu', False) if kwargs: raise TypeError('Unknown keyword arguments: "{}"'.format( list(kwargs.keys())[0])) transformer_list = _get_transformer_list(transformers) return ColumnKernelizer(transformer_list, n_jobs=n_jobs, remainder=remainder, verbose=verbose, force_cpu=force_cpu)
def _get_transformer_list(estimators): """ Construct (name, trans, column) tuples from list """ transformers, columns = zip(*estimators) names, _ = zip(*_name_estimators(transformers)) transformer_list = list(zip(names, transformers, columns)) return transformer_list def _end_with_a_kernel(estimator): """Return True if the estimator returns a kernel.""" if not isinstance(estimator, BaseEstimator): raise ValueError("This function requires a scikit-learn estimator.") if getattr(estimator, "kernelizer", False): return True try: return _end_with_a_kernel(estimator[-1]) except TypeError: pass return False def _to_cpu(X): from ..validation import issparse backend = get_backend() if issparse(X): return X else: return backend.to_cpu(X)