priors¶banded_angles(\*models) |
|
cartesian2polar(ratios) |
ratios : np.ndarray (k, n): |
difference_operator(order, nobs) |
Get a finite difference operator matrix of size nobs. |
polar2cartesian(angles[, radius, …]) |
Convert a set of angles of a sphere defined in n-dimensional space to cartesian coordinates. |
sample_spherical_polar(ndimensions[, …]) |
|
sample_uniform_hypersphere(ndimensions[, …]) |
S2 has a solution: http://mathworld.wolfram.com/SpherePointPicking.html |
sample_uniform_sphere([nsamples]) |
S2 has a solution: http://mathworld.wolfram.com/SpherePointPicking.html |
show_spherical_angles([theta1, theta2, …]) |
Draw a vector on the unit sphere defined by the angles theta1 (inclination on last axis, x_3, x_3->x1) and theta2 (asymuth x_1->x_2 plane). |
simple_polar2cartesian(angle[, radius]) |
Given some polar coordinates, return the cartesian coordinates. |
simple_sphere_angle(x, y, z) |
|
simple_sphere_coord([radius, theta1, theta2]) |
|
spherical_coordinates_n2([offset, nsamples, …]) |
|
spherical_coordinates_n3([offset, nsamples, …]) |
|
standard_sphere_coord(angle[, radius]) |
standard physics way theta1: inclination (angle between z and x/y theta2: asymuth (angle on x-y plane) |
test_spherical_coords() |
tikreg.priors.cartesian2polar(ratios)¶| Returns: |
|
|---|
tikreg.priors.difference_operator(order, nobs)¶Get a finite difference operator matrix of size nobs.
| Parameters: |
|
|---|---|
| Returns: |
|
tikreg.priors.polar2cartesian(angles, radius=1.0, physics_convention=False)¶Convert a set of angles of a sphere defined in n-dimensional space to cartesian coordinates.
| Parameters: |
|
|---|---|
| Returns: |
|
Notes
theta_1 is angle away from x_{n} (inclination towards x_{n-1}) in [0,pi] theta_2 is angle away from x_{n-1} (inclination towards x_{n-2}) in [0,pi] …etc theta_{n-1} is the angle between x_1 and x_2 (asymuth) in [0,2pi]
https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates
tikreg.priors.sample_spherical_polar(ndimensions, offset=1, nsamples=10, max_angle=90.0, spacing=<function linspace at 0x7f65ad9021b8>)¶tikreg.priors.sample_uniform_hypersphere(ndimensions, nsamples=10)¶S2 has a solution: http://mathworld.wolfram.com/SpherePointPicking.html
S3 has a solution: http://mathworld.wolfram.com/HyperspherePointPicking.html
No general solution for higher dimensions
tikreg.priors.sample_uniform_sphere(nsamples=10)¶S2 has a solution: http://mathworld.wolfram.com/SpherePointPicking.html
tikreg.priors.show_spherical_angles(theta1=30.0, theta2=60.0, physics_convention=False)¶Draw a vector on the unit sphere defined by the angles theta1 (inclination on last axis, x_3, x_3->x1) and theta2 (asymuth x_1->x_2 plane).
tikreg.priors.simple_polar2cartesian(angle, radius=1.0)¶Given some polar coordinates, return the cartesian coordinates.
| Parameters: |
|
|---|---|
| Returns: |
|
tikreg.priors.spherical_coordinates_n2(offset=0, nsamples=10, spacing=<function linspace at 0x7f65ad9021b8>)¶tikreg.priors.spherical_coordinates_n3(offset=0, nsamples=10, spacing=<function linspace at 0x7f65ad9021b8>)¶