priors
¶banded_angles (\*models) |
|
cartesian2polar (ratios) |
ratios : np.ndarray (k, n): |
difference_operator (order, nobs) |
Get a finite difference operator matrix of size nobs. |
polar2cartesian (angles[, radius, …]) |
Convert a set of angles of a sphere defined in n-dimensional space to cartesian coordinates. |
sample_spherical_polar (ndimensions[, …]) |
|
sample_uniform_hypersphere (ndimensions[, …]) |
S2 has a solution: http://mathworld.wolfram.com/SpherePointPicking.html |
sample_uniform_sphere ([nsamples]) |
S2 has a solution: http://mathworld.wolfram.com/SpherePointPicking.html |
show_spherical_angles ([theta1, theta2, …]) |
Draw a vector on the unit sphere defined by the angles theta1 (inclination on last axis, x_3, x_3->x1) and theta2 (asymuth x_1->x_2 plane). |
simple_polar2cartesian (angle[, radius]) |
Given some polar coordinates, return the cartesian coordinates. |
simple_sphere_angle (x, y, z) |
|
simple_sphere_coord ([radius, theta1, theta2]) |
|
spherical_coordinates_n2 ([offset, nsamples, …]) |
|
spherical_coordinates_n3 ([offset, nsamples, …]) |
|
standard_sphere_coord (angle[, radius]) |
standard physics way theta1: inclination (angle between z and x/y theta2: asymuth (angle on x-y plane) |
test_spherical_coords () |
tikreg.priors.
cartesian2polar
(ratios)¶Returns: |
|
---|
tikreg.priors.
difference_operator
(order, nobs)¶Get a finite difference operator matrix of size nobs.
Parameters: |
|
---|---|
Returns: |
|
tikreg.priors.
polar2cartesian
(angles, radius=1.0, physics_convention=False)¶Convert a set of angles of a sphere defined in n-dimensional space to cartesian coordinates.
Parameters: |
|
---|---|
Returns: |
|
Notes
theta_1 is angle away from x_{n} (inclination towards x_{n-1}) in [0,pi] theta_2 is angle away from x_{n-1} (inclination towards x_{n-2}) in [0,pi] …etc theta_{n-1} is the angle between x_1 and x_2 (asymuth) in [0,2pi]
https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates
tikreg.priors.
sample_spherical_polar
(ndimensions, offset=1, nsamples=10, max_angle=90.0, spacing=<function linspace at 0x7f65ad9021b8>)¶tikreg.priors.
sample_uniform_hypersphere
(ndimensions, nsamples=10)¶S2 has a solution: http://mathworld.wolfram.com/SpherePointPicking.html
S3 has a solution: http://mathworld.wolfram.com/HyperspherePointPicking.html
No general solution for higher dimensions
tikreg.priors.
sample_uniform_sphere
(nsamples=10)¶S2 has a solution: http://mathworld.wolfram.com/SpherePointPicking.html
tikreg.priors.
show_spherical_angles
(theta1=30.0, theta2=60.0, physics_convention=False)¶Draw a vector on the unit sphere defined by the angles theta1 (inclination on last axis, x_3, x_3->x1) and theta2 (asymuth x_1->x_2 plane).
tikreg.priors.
simple_polar2cartesian
(angle, radius=1.0)¶Given some polar coordinates, return the cartesian coordinates.
Parameters: |
|
---|---|
Returns: |
|
tikreg.priors.
spherical_coordinates_n2
(offset=0, nsamples=10, spacing=<function linspace at 0x7f65ad9021b8>)¶tikreg.priors.
spherical_coordinates_n3
(offset=0, nsamples=10, spacing=<function linspace at 0x7f65ad9021b8>)¶