Source code for cortex.dataset.viewRGB

import numpy as np
import colorsys
import warnings

from .views import Dataview, Volume, Vertex
from .braindata import VolumeData, VertexData, _hash
from ..database import db

from .. import options
default_cmap = options.config.get("basic", "default_cmap")


class Colors(object):
    """
    Set of known colors
    """
    RoseRed = (237, 35, 96)
    LimeGreen = (141, 198, 63)
    SkyBlue = (0, 176, 218)
    DodgerBlue = (30, 144, 255)
    Red = (255, 000, 000)
    Green = (000, 255, 000)
    Blue = (000, 000, 255)


def RGB2HSV(color):
    """
    Converts RGB to HS
    Parameters
    ----------
    color : tuple<uint8, uint8, uint8>
        RGB color value

    Returns
    -------
    tuple<int, float, float>
        HSV values. Hue in degrees, saturation and value on [0, 1]

    """
    hue, saturation, value = colorsys.rgb_to_hsv(color[0] / 255.0, color[1] / 255.0, color[2] / 255.0)
    hue *= 360
    return (int(hue), saturation, value)


def HSV2RGB(color):
    """
    Converts HSV to RGB

    Parameters
    ----------
    color : tuple<int, float, float>
        HSV values. Hue in degrees, saturation and value on [0, 1]

    Returns
    -------
    tuple<uint8, uint8, uint8>
        RGB color value
    """
    r, g, b = colorsys.hsv_to_rgb(color[0] / 360.0, color[1], color[2])
    return (int(r * 255), int(g * 255), int(b * 255))


class DataviewRGB(Dataview):
    """Abstract base class for RGB data views.
    """
    def __init__(self, subject=None, alpha=None, description="", state=None, **kwargs):
        self.alpha = alpha
        self.subject = self.red.subject
        self.movie = self.red.movie
        self.description = description
        self.state = state
        self.attrs = kwargs
        if 'priority' not in self.attrs:
            self.attrs['priority'] = 1

        # If movie, make sure each channel has the same number of time points
        if self.red.movie:
            if not self.red.data.shape[0] == self.green.data.shape[0] == self.blue.data.shape[0]:
                raise ValueError("For movie data, all three channels have to be the same length")

    def uniques(self, collapse=False):
        if collapse:
            yield self
        else:
            yield self.red
            yield self.green
            yield self.blue
            if self.alpha is not None:
                yield self.alpha

    def _write_hdf(self, h5, name="data", xfmname=None):
        self._cls._write_hdf(self.red, h5)
        self._cls._write_hdf(self.green, h5)
        self._cls._write_hdf(self.blue, h5)

        alpha = None
        if self.alpha is not None:
            self._cls._write_hdf(self.alpha, h5)
            alpha = self.alpha.name

        data = [self.red.name, self.green.name, self.blue.name, alpha]
        viewnode = Dataview._write_hdf(self, h5, name=name,
                                       data=[data], xfmname=xfmname)

        return viewnode

    def to_json(self, simple=False):
        sdict = super(DataviewRGB, self).to_json(simple=simple)

        if simple:
            sdict['name'] = self.name
            sdict['subject'] = self.subject
            sdict['min'] = 0
            sdict['max'] = 255
        else:
            sdict['data'] = [self.name]
            sdict['cmap'] = [default_cmap]
            sdict['vmin'] = [0]
            sdict['vmax'] = [255]
        return sdict

    def get_cmapdict(self):
        return dict()


[docs] class VolumeRGB(DataviewRGB): """ Contains RGB (or RGBA) colors for each voxel in a volumetric dataset. Includes information about the subject and transform for the data. Three data channels are mapped into a 3D color set. By default the data channels are mapped on to red, green, and blue. They can also be mapped to be different colors as specified, and then linearly combined. Each data channel is represented as a separate Volume object (these can either be supplied explicitly as Volume objects or implicitly as numpy arrays). The vmin for each Volume will be mapped to the minimum value for that data channel, and the vmax will be mapped to the maximum value. If `shared_range` is True, the vim and vmax will instead computed by combining all three data channels. Parameters ---------- channel1 : ndarray or Volume Array or Volume for the first data channel for each voxel. Can be a 1D or 3D array (see Volume for details), or a Volume. channel2 : ndarray or Volume Array or Volume for the second data channel for each voxel. Can be a 1D or 3D array (see Volume for details), or a Volume. channel3 : ndarray or Volume Array or Volume for the third data channel for or each voxel. Can be a 1D or 3D array (see Volume for details), or a Volume. subject : str, optional Subject identifier. Must exist in the pycortex database. If not given, red must be a Volume from which the subject can be extracted. xfmname : str, optional Transform name. Must exist in the pycortex database. If not given, red must be a Volume from which the subject can be extracted. alpha : ndarray or Volume, optional Array or Volume that represents the alpha component of the color for each voxel. Can be a 1D or 3D array (see Volume for details), or a Volume. If None, all voxels will be assumed to have alpha=1.0. description : str, optional String describing this dataset. Displayed in webgl viewer. state : optional TODO: describe what this is channel1color : tuple<uint8, uint8, uint8> RGB color to use for the first data channel channel2color : tuple<uint8, uint8, uint8> RGB color to use for the second data channel channel3color : tuple<uint8, uint8, uint8> RGB color to use for the third data channel max_color_value : float [0, 1], optional Maximum HSV value for voxel colors. If not given, will be the value of the average of the three channel colors. max_color_saturation: float [0, 1] Maximum HSV saturation for voxel colors. shared_range : bool Use the same vmin and vmax for all three color channels? shared_vmin : float, optional Predetermined shared vmin. Does nothing if shared_range == False. If not given, will be the 1st percentile of all values across all three channels. shared_vmax : float, optional Predetermined shared vmax. Does nothing if shared_range == False. If not given, will be the 99th percentile of all values across all three channels **kwargs All additional arguments in kwargs are passed to the VolumeData and Dataview. """ _cls = VolumeData
[docs] def __init__(self, channel1, channel2, channel3, subject=None, xfmname=None, alpha=None, description="", state=None, channel1color=Colors.Red, channel2color=Colors.Green, channel3color=Colors.Blue, max_color_value=None, max_color_saturation=1.0, shared_range=False, shared_vmin=None, shared_vmax=None, **kwargs): channel1color = tuple(channel1color) channel2color = tuple(channel2color) channel3color = tuple(channel3color) if isinstance(channel1, VolumeData): if not isinstance(channel2, VolumeData) or channel1.subject != channel2.subject: raise TypeError("Data channel 2 is not a VolumeData object or is from a different subject") if not isinstance(channel3, VolumeData) or channel1.subject != channel3.subject: raise TypeError("Data channel 2 is not a VolumeData object or is from a different subject") if (subject is not None) and (channel1.subject != subject): raise ValueError('Subject in VolumeData objects is different than specified subject') if (channel1color == Colors.Red) and (channel2color == Colors.Green) and (channel3color == Colors.Blue) \ and shared_range is False: # R/G/B basis can be directly passed through self.red = channel1 self.green = channel2 self.blue = channel3 self.alpha = alpha else: # need to remap colors red, green, blue, alpha = VolumeRGB.color_voxels( channel1, channel2, channel3, channel1color, channel2color, channel3color, max_color_value, max_color_saturation, shared_range, shared_vmin, shared_vmax, alpha=alpha ) self.red = Volume(red, channel1.subject, channel1.xfmname) self.green = Volume(green, channel1.subject, channel1.xfmname) self.blue = Volume(blue, channel1.subject, channel1.xfmname) self.alpha = alpha else: if subject is None or xfmname is None: raise TypeError("Subject and xfmname are required") if (channel1color == Colors.Red) and (channel2color == Colors.Green) and (channel3color == Colors.Blue)\ and shared_range is False: # R/G/B basis can be directly passed through self.red = Volume(channel1, subject, xfmname) self.green = Volume(channel2, subject, xfmname) self.blue = Volume(channel3, subject, xfmname) self.alpha = alpha else: # need to remap colors red, green, blue, alpha = VolumeRGB.color_voxels( channel1, channel2, channel3, channel1color, channel2color, channel3color, max_color_value, max_color_saturation, shared_range, shared_vmin, shared_vmax, alpha=alpha ) self.red = Volume(red, subject, xfmname) self.green = Volume(green, subject, xfmname) self.blue = Volume(blue, subject, xfmname) self.alpha = alpha if self.red.xfmname == self.green.xfmname == self.blue.xfmname == self.alpha.xfmname: self.xfmname = self.red.xfmname else: raise ValueError('Cannot handle different transforms per volume') super(VolumeRGB, self).__init__(subject, alpha, description=description, state=state, **kwargs)
@property def alpha(self): """Compute alpha transparency""" alpha = self._alpha if alpha is None: alpha = np.ones(self.red.volume.shape) alpha = Volume(alpha, self.red.subject, self.red.xfmname, vmin=0, vmax=1) if not isinstance(alpha, Volume): if alpha.dtype != np.uint8 and (alpha.min() < 0 or alpha.max() > 1): warnings.warn( "Some alpha values are outside the range of [0, 1]. " "Consider passing a Volume object as alpha with explicit vmin, vmax " "keyword arguments.", Warning ) alpha = Volume(alpha, self.red.subject, self.red.xfmname, vmin=0, vmax=1) rgb = np.array([self.red.volume, self.green.volume, self.blue.volume]) mask = np.isnan(rgb).any(axis=0) alpha.volume[mask] = alpha.vmin return alpha @alpha.setter def alpha(self, alpha): self._alpha = alpha
[docs] def to_json(self, simple=False): sdict = super(VolumeRGB, self).to_json(simple=simple) if simple: sdict['shape'] = self.red.shape else: sdict['xfm'] = [list(np.array(db.get_xfm(self.subject, self.xfmname, 'coord').xfm).ravel())] return sdict
@property def volume(self): """5-dimensional volume (t, z, y, x, rgba) with data that has been mapped into 8-bit unsigned integers that correspond to colors. """ volume = [] for dv in (self.red, self.green, self.blue, self.alpha): if dv.volume.dtype != np.uint8: vol = dv.volume.astype("float32", copy=True) if dv.vmin is None: if vol.min() < 0: vol -= vol.min() else: vol -= dv.vmin if dv.vmax is None: if vol.max() > 1: vol /= vol.max() else: vol /= dv.vmax - dv.vmin vol = (np.clip(vol, 0, 1) * 255).astype(np.uint8) else: vol = dv.volume.copy() volume.append(vol) return np.array(volume).transpose([1, 2, 3, 4, 0]) def __repr__(self): return "<RGB volumetric data for (%s, %s)>"%(self.red.subject, self.red.xfmname) def __hash__(self): return hash(_hash(self.volume)) @property def name(self): return "__%s"%_hash(self.volume)[:16] def _write_hdf(self, h5, name="data"): return super(VolumeRGB, self)._write_hdf(h5, name=name, xfmname=[self.xfmname]) @property def raw(self): return self
[docs] @staticmethod def color_voxels(channel1, channel2, channel3, channel1color, channel2color, channel3Color, value_max, saturation_max, common_range, common_min, common_max, alpha=None): """ Colors voxels in 3 color dimensions but not necessarily canonical red, green, and blue Parameters ---------- channel1 : ndarray or Volume voxel values for first channel channel2 : ndarray or Volume voxel values for second channel channel3 : ndarray or Volume voxel values for third channel channel1color : tuple<uint8, uint8, uint8> color in RGB for first channel channel2color : tuple<uint8, uint8, uint8> color in RGB for second channel channel3Color : tuple<uint8, uint8, uint8> color in RGB for third channel value_max : float, optional Maximum HSV value for voxel colors. If not given, will be the value of the average of the three channel colors. saturation_max : float [0, 1] Maximum HSV saturation for voxel colors. common_range : bool Use the same vmin and vmax for all three color channels? common_min : float, optional Predetermined shared vmin. Does nothing if shared_range == False. If not given, will be the 1st percentile of all values across all three channels. common_max : float, optional Predetermined shared vmax. Does nothing if shared_range == False. If not given, will be the 99th percentile of all values across all three channels alpha : ndarray or Volume, optional Alpha values for each voxel. If None, alpha is set to 1 for all voxels. Returns ------- red : ndarray of channel1.shape uint8 array of red values green : ndarray of channel1.shape uint8 array of green values blue : ndarray of channel1.shape uint8 array of blue values alpha : ndarray If alpha=None, uint8 array of alpha values with alpha=1 for every voxel. Otherwise, the same alpha values that were passed in. Additionally, voxels with NaNs will have an alpha value of 0. """ # normalize each channel to [0, 1] data1 = channel1.data if isinstance(channel1, VolumeData) else channel1 data1 = data1.astype(float) data2 = channel2.data if isinstance(channel2, VolumeData) else channel2 data2 = data2.astype(float) data3 = channel3.data if isinstance(channel3, VolumeData) else channel3 data3 = data3.astype(float) if (data1.shape != data2.shape) or (data2.shape != data3.shape): raise ValueError('Volumes are of different shapes') # Create an alpha mask now, before casting nans to 0 # Voxels with at least one channel equal to NaN will be masked out. mask = np.isnan(np.array([data1, data2, data3])).any(axis=0) # Now convert to NaNs to num for all channels data1 = np.nan_to_num(data1) data2 = np.nan_to_num(data2) data3 = np.nan_to_num(data3) if common_range: if common_min is None: if common_max is None: common_min = np.percentile(np.hstack((data1, data2, data3)), 1) else: common_min = 0 if common_max is None: common_max = np.percentile(np.hstack((data1, data2, data3)), 99) data1 -= common_min data2 -= common_min data3 -= common_min data1 /= (common_max - common_min) data2 /= (common_max - common_min) data3 /= (common_max - common_min) else: channelMin = np.percentile(data1, 1) channelMax = np.percentile(data1, 99) data1 -= channelMin data1 /= (channelMax - channelMin) channelMin = np.percentile(data2, 1) channelMax = np.percentile(data2, 99) data2 -= channelMin data2 /= (channelMax - channelMin) channelMin = np.percentile(data3, 1) channelMax = np.percentile(data3, 99) data3 -= channelMin data3 /= (channelMax - channelMin) data1 = np.clip(data1, 0, 1) data2 = np.clip(data2, 0, 1) data3 = np.clip(data3, 0, 1) channel1color = np.array(channel1color) channel2color = np.array(channel2color) channel3Color = np.array(channel3Color) averageColor = (channel1color + channel2color + channel3Color) / 3 if value_max is None: _, _, value = RGB2HSV(averageColor) value_max = value red = np.zeros_like(data1, np.uint8) green = np.zeros_like(data1, np.uint8) blue = np.zeros_like(data1, np.uint8) for i in range(data1.size): this_color = data1.flat[i] * channel1color + data2.flat[i] * channel2color + data3.flat[i] * channel3Color this_color /= 3.0 if (value_max != 1.0) or (saturation_max != 1.0): hue, saturation, value = RGB2HSV(this_color) saturation /= saturation_max value /= value_max if saturation > 1: saturation = 1.0 if value > 1: value = 1.0 this_color = HSV2RGB([hue, saturation, value]) red.flat[i] = this_color[0] green.flat[i] = this_color[1] blue.flat[i] = this_color[2] # Now make an alpha volume if alpha is None: alpha = np.ones_like(red, np.uint8) * 255 alpha[mask] = 0 return red, green, blue, alpha
[docs] class VertexRGB(DataviewRGB): """ Contains RGB (or RGBA) colors for each vertex in a surface dataset. Includes information about the subject. Each color channel is represented as a separate Vertex object (these can either be supplied explicitly as Vertex objects or implicitly as np arrays). The vmin for each Vertex will be mapped to the minimum value for that color channel, and the vmax will be mapped to the maximum value. Parameters ---------- red : ndarray or Vertex Array or Vertex that represents the red component of the color for each voxel. Can be a 1D or 3D array (see Vertex for details), or a Vertex. green : ndarray or Vertex Array or Vertex that represents the green component of the color for each voxel. Can be a 1D or 3D array (see Vertex for details), or a Vertex. blue : ndarray or Vertex Array or Vertex that represents the blue component of the color for each voxel. Can be a 1D or 3D array (see Vertex for details), or a Vertex. subject : str, optional Subject identifier. Must exist in the pycortex database. If not given, red must be a Vertex from which the subject can be extracted. alpha : ndarray or Vertex, optional Array or Vertex that represents the alpha component of the color for each voxel. Can be a 1D or 3D array (see Vertex for details), or a Vertex. If None, all vertices will be assumed to have alpha=1.0. description : str, optional String describing this dataset. Displayed in webgl viewer. state : optional TODO: describe what this is **kwargs All additional arguments in kwargs are passed to the VertexData and Dataview. """ _cls = VertexData blend_curvature = _cls.blend_curvature # hacky inheritance
[docs] def __init__(self, red, green, blue, subject=None, alpha=None, description="", state=None, **kwargs): if isinstance(red, VertexData): if not isinstance(green, VertexData) or red.subject != green.subject: raise TypeError("Invalid data for green channel") if not isinstance(blue, VertexData) or red.subject != blue.subject: raise TypeError("Invalid data for blue channel") self.red = red self.green = green self.blue = blue else: if subject is None: raise TypeError("Subject name is required") self.red = Vertex(red, subject) self.green = Vertex(green, subject) self.blue = Vertex(blue, subject) self.alpha = alpha super(VertexRGB, self).__init__(subject, alpha, description=description, state=state, **kwargs)
@property def alpha(self): """Compute alpha transparency""" alpha = self._alpha if alpha is None: alpha = np.ones(self.red.vertices.shape[1]) alpha = Vertex(alpha, self.red.subject, vmin=0, vmax=1) if not isinstance(alpha, Vertex): if alpha.dtype != np.uint8 and (alpha.min() < 0 or alpha.max() > 1): warnings.warn( "Some alpha values are outside the range of [0, 1]. " "Consider passing a Vertex object as alpha with explicit vmin, vmax " "keyword arguments.", Warning ) alpha = Vertex(alpha, self.red.subject, vmin=0, vmax=1) rgb = np.array([self.red.data, self.green.data, self.blue.data]) mask = np.isnan(rgb).any(axis=0) alpha.data[mask] = alpha.vmin return alpha @alpha.setter def alpha(self, alpha): self._alpha = alpha @property def vertices(self): """3-dimensional volume (t, v, rgba) with data that has been mapped into 8-bit unsigned integers that correspond to colors. """ verts = [] for dv in (self.red, self.green, self.blue, self.alpha): if dv.vertices.dtype != np.uint8: vert = dv.vertices.astype("float32", copy=True) if dv.vmin is None: if vert.min() < 0: vert -= vert.min() else: vert -= dv.vmin if dv.vmax is None: if vert.max() > 1: vert /= vert.max() else: vert /= dv.vmax - dv.vmin vert = (np.clip(vert, 0, 1) * 255).astype(np.uint8) else: vert = dv.vertices.copy() verts.append(vert) return np.array(verts).transpose([1, 2, 0])
[docs] def to_json(self, simple=False): sdict = super(VertexRGB, self).to_json(simple=simple) if simple: sdict.update(dict(split=self.red.llen, frames=self.vertices.shape[0])) return sdict
@property def left(self): return self.vertices[:,:self.red.llen] @property def right(self): return self.vertices[:,self.red.llen:] def __repr__(self): return "<RGB vertex data for (%s)>"%(self.subject) def __hash__(self): return hash(_hash(self.vertices)) @property def name(self): return "__%s"%_hash(self.vertices)[:16] @property def raw(self): return self