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The meaning of words in natural language depends crucially on context. However, most neuroimaging studies of word mean-
ing use isolated words and isolated sentences with little context. Because the brain may process natural language differently
from how it processes simplified stimuli, there is a pressing need to determine whether prior results on word meaning gener-
alize to natural language. fMRI was used to record human brain activity while four subjects (two female) read words in four
conditions that vary in context: narratives, isolated sentences, blocks of semantically similar words, and isolated words. We
then compared the signal-to-noise ratio (SNR) of evoked brain responses, and we used a voxelwise encoding modeling
approach to compare the representation of semantic information across the four conditions. We find four consistent effects
of varying context. First, stimuli with more context evoke brain responses with higher SNR across bilateral visual, temporal,
parietal, and prefrontal cortices compared with stimuli with little context. Second, increasing context increases the representa-
tion of semantic information across bilateral temporal, parietal, and prefrontal cortices at the group level. In individual sub-
jects, only natural language stimuli consistently evoke widespread representation of semantic information. Third, context
affects voxel semantic tuning. Finally, models estimated using stimuli with little context do not generalize well to natural lan-
guage. These results show that context has large effects on the quality of neuroimaging data and on the representation of
meaning in the brain. Thus, neuroimaging studies that use stimuli with little context may not generalize well to the natural
regime.

Significance Statement

Context is an important part of understanding the meaning of natural language, but most neuroimaging studies of meaning
use isolated words and isolated sentences with little context. Here, we examined whether the results of neuroimaging studies
that use out-of-context stimuli generalize to natural language. We find that increasing context improves the quality of neuro-
imaging data and changes where and how semantic information is represented in the brain. These results suggest that find-
ings from studies using out-of-context stimuli may not generalize to natural language used in daily life.

Introduction
Language is our main means of communication and an integral
part of daily life. Natural language comprehension requires

extracting meaning from words that are embedded in context.
However, most neuroimaging studies of word meaning use sim-
plified stimuli consisting of isolated words or sentences (Price,
2012). Natural language differs from isolated words and senten-
ces in several ways. Natural language contains phonological and
orthographic patterns, lexical semantics, syntactic structure, and
compositional-level and discourse-level semantics embedded in
social context (Hagoort, 2019). In contrast, isolated words and
sentences only contain a few of these components (e.g., lexical
meaning, local syntactic structure). (For concision, this paper
will refer to all differences between natural language and isolated
words/sentences as differences in “context.”)

Neuroimaging studies that use isolated words and sentences
implicitly assume that their results will generalize to natural lan-
guage. However, because the brain is a highly nonlinear dynami-
cal system (Wu et al., 2006; Breakspear, 2017), the representation
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of semantic information may change depending on context
(Poeppel et al., 2012; Hagoort, 2019; Hamilton and Huth, 2020).
Indeed, contextual effects have been demonstrated clearly in other
domains. For example, many neurons in the visual system respond
differently to simplified stimuli compared with naturalistic stim-
uli (Simoncelli and Olshausen, 2001; Ringach et al., 2002; David et
al., 2004; Touryan et al., 2005). However, few studies have exam-
ined whether insights about semantic representation from studies
using simplified stimuli will generalize to natural language.

Results from past studies suggest that context has a large
effect on semantic representation. Several natural language stud-
ies from our lab reported that semantic information is repre-
sented in a large, distributed network of brain regions including
bilateral temporal, parietal, and prefrontal cortices, and that
semantic information is represented independently of the presen-
tation modality (Huth et al., 2016; Deniz et al., 2019). In contrast,
studies that used isolated words or sentences as stimuli inde-
pendently identified only a few brain regions that represent
semantic information. These studies have separately identified
angular gyrus, left inferior frontal gyrus (IFG), left ventrome-
dial prefrontal cortex (vmPFC), left dorsolateral prefrontal
cortex (dmPFC), anterior temporal lobe, lateral-, ventral-, and
inferotemporal cortex, posterior cingulate gyrus, and poste-
rior parietal cortex (for reviews, see Binder et al., 2009; Price,
2010, 2012).

One way that context might affect neuroimaging results is
by affecting the signal-to-noise ratio (SNR) of evoked brain
responses [i.e., affecting the metabolic activity of the brain
such that the repeatability of the recorded blood oxygen level-
dependent (BOLD) response is affected]. Although no lan-
guage studies have explicitly looked at the SNR of evoked
BOLD responses (evoked SNR), several converging lines of

evidence suggest that context does affect
evoked SNR in language studies. Lerner et
al. (2011) examined how language context
affects cross-subject correlations in brain
responses, and they reported that as the
amount of context increased, the number of
voxels that were correlated across subjects
also increased. These voxels were located in
high-level brain regions including temporo-
parietal junction (TPJ), precuneus, and
medial prefrontal cortex (mPFC). In con-
trast, voxel responses in sensory regions and
the superior temporal sulcus (STS) were reli-
ably correlated when stimuli with little con-
text were presented to the subjects (see also
Hasson et al., 2015). In addition, several con-
trast-based fMRI language studies reported
that increasing context evoked larger and
more widespread patterns of brain activity
in posterior STS, TPJ, and mPFC (Mazoyer
et al., 1993; Xu et al., 2005; Jobard et al.,
2007). Finally, most subjects are more atten-
tive when reading natural stories than when
reading isolated words, and attention affects
BOLD SNR (Bressler and Silver, 2010).

Another more interesting way that
context might affect neuroimaging re-
sults is by directly changing semantic
representations in the brain (i.e., chang-
ing which voxels represent semantic in-
formation and/or the semantic tuning
of those voxels). Context can change the

way that subjects attend to semantic information, and seman-
tic representations in many brain areas shift toward attended
semantic categories (Çukur et al., 2013; Sprague et al., 2015;
Nastase et al., 2017). Context also changes the statistical struc-
ture of language stimuli, and these statistical changes can
affect cognitive processes and representations in a variety of
ways (Wu et al., 2006; Dahmen et al., 2010; Breakspear, 2017).

To test the hypotheses that context affects both evoked SNR
and semantic representations, we used fMRI and a voxelwise
encoding model approach to directly compare four stimulus con-
ditions that vary in context: Narratives, Sentences, Semantic
Blocks, and Single Words (Fig. 1). The Narratives condition con-
sisted of four narrative stories used in our previous studies (Huth
et al., 2016; Deniz et al., 2019; Popham et al., 2021). The other
three conditions used sentences, blocks of semantically similar
words, and individual words sampled from the narratives.

Materials and Methods
Experimental design and statistical analysis
Subjects
Functional data were collected from two males and two females: S1
(male, age 31), S2 (male, age 24), S3 (female, age 24), and S4 (female, age
23). All subjects were healthy and had normal hearing and normal or
corrected-to-normal vision. All subjects were right handed according to
the Edinburgh handedness inventory (Oldfield, 1971). Laterality scores
were 170 (decile R.3) for S1, 195 (decile R.9) for S2, 190 (decile R.7)
for S3,180 (decile R.5) for S4.

MRI data collection
MRI data were collected on a 3T Siemens TIM Trio scanner with a 32-
channel Siemens volume coil, located at the University of California,
Berkeley Brain Imaging Center. Functional scans were collected using

Figure 1. Stimulus conditions. The experiment contained four stimulus conditions that were based on the 10 model estimation
narratives and one model validation narrative used in Huth et al. (2016). The Single Words condition consisted of words sampled
randomly from the 10 model estimation narratives. The Semantic Blocks condition consisted of blocks of words sampled from clus-
ters of semantically similar words from the 10 model estimation narratives. There were 12 distinct clusters of semantically similar
words, and blocks of words were created by randomly sampling 114 words from one word cluster for each block. The Sentences
condition consisted of sentences sampled randomly from the 10 model estimation narratives. Finally, the Narratives condition con-
sisted of three out of the 10 model estimation narratives and the one model validation narrative.
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gradient echo EPI with repetition time (TR) = 2.0045 s, echo time
(TE) = 31 ms, flip angle = 70°, voxel size = 2.24� 2.24� 4.1 mm
(slice thickness = 3.5 mm with 18% slice gap), matrix size = 100�
100, and field of view = 224� 224 mm. Thirty axial slices were pre-
scribed to cover the entire cortex and were scanned in interleaved
order. A custom-modified bipolar water excitation radio frequency
(RF) pulse was used to avoid signal from fat. Anatomical data were col-
lected using a T1-weighted multiecho MP-RAGE sequence on the same
3T scanner. Approximately 3.5 h (214.85min) of fMRI data were col-
lected for each subject.

fMRI data preprocessing
The FMRIB Linear Image Registration Tool (FLIRT) from FSL 5.0
(Jenkinson and Smith, 2001; Jenkinson et al., 2002) was used to motion-
correct each functional run. A high-quality template volume was then
created for each run by averaging all volumes in the run across time.
FLIRT was used to automatically align the template volume for each run
to an overall template, which was chosen to be the temporal average of
the first functional run for each subject. These automatic alignments
were manually checked and adjusted as necessary to improve accuracy.
The cross-run transformation matrix was then concatenated to the
motion-correction transformation matrices obtained using MCFLIRT,
and the concatenated transformation was used to resample the original
data directly into the overall template space.

A third order Savitsky–Golay filter with a 121-TR window was used
to identify low-frequency voxel response drift. This drift was subtracted
from the signal before further processing. Responses for each run were
z-scored separately before voxelwise modeling. In addition, 10 TRs were
discarded from the beginning and the end (20 TRs total) of each run.

Cortical surface reconstruction and visualization
Freesurfer (Dale et al., 1999) was used to generate cortical surface meshes
from the T1-weighted anatomical scans. Before surface reconstruction,
Blender and pycortex (https://gallantlab.github.io/pycortex/; Gao et al.,
2015) were used to carefully hand-check and correct anatomical surface
segmentations. To aid in cortical flattening, Blender and pycortex were
used to remove the surface crossing the corpus callosum, and relaxation
cuts were made into the surface of each hemisphere. The calcarine sulcus
cut was made at the horizontal meridian in V1 as identified from retino-
topic mapping data.

Pycortex (Gao et al., 2015) was used to align functional images to the
cortical surface. The line-nearest scheme in pycortex was used to project
functional data onto the surface for visualization and subsequent analy-
sis. The line-nearest scheme samples the functional data at 64 evenly-
spaced intervals between the inner (white matter) and outer (pial) surfaces
of the cortex and averages the samples. Samples are taken using
nearest-neighbor interpolation, in which each sample is given the value of
its enclosing voxel.

Stimuli
Stimuli for all four conditions were generated from 11 spoken stories
from The Moth Radio Hour (used previously by Huth et al., 2016). In
each story, a speaker tells an autobiographical story in front of a live au-
dience. The 11 stories are 10–15min long, cover a wide range of topics,
and are highly engaging. Transcriptions of these stories were used to
generate the stimuli.

Story transcription
Each story was manually transcribed by one listener, and this transcrip-
tion was checked by a second listener. Certain sounds (e.g., laughter, lip-
smacking, and breathing) were also transcribed to improve the accuracy
of the automated alignment. The audio of each story was downsampled
to 11.5 kHz and the Penn Phonetics Lab Forced Aligner (P2FA; Yuan
and Liberman, 2008) was used to automatically align the audio to the
transcript. P2FA uses a phonetic hidden Markov model to find the tem-
poral onset and offset of each word and phoneme. The Carnegie Mellon
University pronouncing dictionary was used to guess the pronunciation
of each word. The Arpabet phonetic notation was used when necessary

to manually add words and word fragments that appeared in the tran-
script but not in the pronouncing dictionary.

After automatic alignment was complete, Praat (Boersman andWeenink,
2014) was used to manually check and correct each aligned transcript. The
corrected, aligned transcript was then spot-checked for accuracy by a differ-
ent listener. Finally, Praat’s TextGrid object was used to convert the aligned
transcripts into word representations. The word representation of each story
is a list of pairs (W, t), whereW is a word and t is the time in seconds.

Stimulus conditions
To evaluate the effects of context on evoked SNR and semantic represen-
tation in the brain, four stimulus conditions with different amounts of
context were created. These four conditions were Narratives, Sentences,
Semantic Blocks, and Single Words.

The Narratives condition consisted of four narratives from The
Moth Radio Hour (“undertheinfluence,” “souls,” “life,” “wheretheress-
moke”). Three of the four narratives (“undertheinfluence,” “souls,” “life”)
were chosen from the 10 model estimation narratives used by Huth et al.
(2016), and the fourth narrative ("wheretheressmoke") was the model vali-
dation narrative used by Huth et al. (2016). Each narrative was presented
in a separate;10-min scanning run. One narrative (“wheretheressmoke”)
was used as the model validation stimulus, and it was presented twice for
each subject.

The Sentences condition consisted of sentences randomly sampled
from the 10 model estimation narratives used by Huth et al. (2016).
Sentence boundaries were marked manually, resulting in 1450 sentences
with a median sentence length of 13 words (min=5 words, max=40
words). Sentences were presented in four unique ;10-min-long scanning
runs. One run was used as the model validation stimulus, and it was pre-
sented twice for each subject.

The Semantic Blocks condition consisted of blocks of semantically
clustered words from the 10 model estimation narratives used by Huth
et al. (2016). The motivation for this condition was to mimic the time-
scale on which semantic topics change in natural language without
including grammatical and syntactic components. The semantic word
clusters were designed to elicit maximally different voxel responses. To cre-
ate the clusters, each word was first transformed into its semantic model
representation (see below, Voxelwise model fitting and validation). The
semantic model representation for each word was then projected onto the
first 10 principal components of the semantic model weights estimated by
Huth et al. (2016). Finally, the projections were clustered with k-means
clustering (k=12) to create 12 word clusters. During each scanning run,
subjects saw 12 different blocks of 114 words each. The words in each block
were sampled from one of the word clusters, and eight different word clus-
ters were sampled in each run. The frequency with which each cluster was
sampled was matched to the frequency with which words from that cluster
appeared in the 10 narratives. Blocks were presented in four unique
;10-min-long scanning runs. One run was used as the model valida-
tion stimulus, and it was presented twice for each subject.

The Single Words condition consisted of words randomly sampled
without replacement from the 10 model estimation narratives used by
Huth et al. (2016). There were 21,743 appearances of 2868 unique words
across the narratives, and each appearance was sampled uniformly.
Words were presented in four unique 10-min scanning runs. One run
was used as the model validation stimulus, and it was presented twice for
each subject.

For the Sentences, Semantic Blocks, and Single Words conditions,
text descriptions of auditory sounds (e.g., laughter and applause) in the
10 narratives were removed. In addition, obvious transcription errors
were removed from the list of narrative words for the Semantic Blocks
and Single Words conditions. Words that did not make sense by them-
selves (e.g., “tai,” “chi”) were also removed. There were five such words:
“tai,” “chi,” “deja,” “vu,” and “sub.”

Stimulus presentation
In all conditions, words were presented individually at the center of the
screen using Rapid Serial Visual Presentation (RSVP; Forster, 1970;
Buchweitz et al., 2009, Figure 2). Words in the Narratives and Sentences
conditions were presented with the same timing and duration as in the
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original spoken stories. Words in the Semantic Blocks and Single Words
conditions were presented for a baseline of 400ms with an additional
10ms for every character. For example, the word “apple” would be pre-
sented for 400ms1 10ms/character p (5 characters) = 450ms. The word
presentation timing was determined after extensive pilot testing before
the experiment was run. The resulting parameters provided a good bal-
ance between readability and keeping subject engagement.

For subjects S1, S2, and S4, the Single Words, Semantic Blocks, and
Sentences conditions were presented in 15 runs over two scanning ses-
sions. Each condition was presented in a separate run, and the runs were
interleaved in each session. In the first session, the conditions were pre-
sented in the order: Single Words, Semantic Blocks (validation stimulus),
Sentences, Single Words (validation stimulus), Semantic Blocks, Sentences
(validation stimulus), Semantic Blocks, Sentences. In the second session,
the conditions were presented in the order: Sentences, Single Words (vali-
dation stimulus), Semantic Blocks, Single Words, Semantic Blocks (valida-
tion stimulus), Single Words, Sentences (validation stimulus). Conditions
were presented in the same order for subjects S1, S2, and S4. For subject
S3, the Single Words, Semantic Blocks, and Sentences conditions were
presented in three scanning sessions. Each condition was presented in a
separate scanning session, and each session contained eight runs (includ-
ing two repetitions of the validation stimulus). The stimuli used for this
paper was a subset of the total stimuli presented in the three sessions.
Although the stimuli were presented differently for subject S3, the results
for subject S3 are consistent with the other three subjects. For all four sub-
jects, the Narratives condition was presented over two scanning sessions.
Each session contained seven runs (including one or two presentations of
the validation stimulus in each session), and all 11 Narratives from Huth
et al. (2016) were presented during the two sessions. The stimuli used for
this paper was a subset of the total stimuli presented in the two sessions.

The pygame library in Python was used to display black text on a gray
background at 34 horizontal and 27 vertical degrees of visual angle. Letters
were presented at average six (min=1, max=16) horizontal and three verti-
cal degrees of visual angle. A white fixation cross was present at the center of
the display. Subjects were asked to fixate while reading the text. Eye move-
ments were monitored at 60Hz throughout the scanning sessions using a
custom-built camera system equipped with an infrared source (Avotec) and
the ViewPoint EyeTracker software suite (Arrington Research). The eye
tracker was calibrated before each session of data acquisition.

Explainable variance
To measure the evoked SNR of each stimulus condition, we computed
the explainable variance (EV). EV was computed as the amount of var-
iance in the response of a voxel that can be explained by the mean
response of the voxel across multiple repetitions of the same stimulus.
Formally, if the responses of a voxel to a repeated stimulus is expressed
as a matrix Y with dimensions (# of TRs in each repetition, # of stimulus
repetitions), then EV is given by

EV = EV’� [(1� EV’)/(# of stimulus repetitions� 1)],

where EV’ = 1� [variance(Y�mean(Y, axis = 1))/variance(Y)].

Note that this is the same as the coefficient of determination (R2)
where the model prediction is the mean response across stimulus repeti-
tions. For each condition, EV was computed from the two repeated vali-
dation runs. The EV for each condition is shown in Figure 3.

Voxelwise model fitting and validation
To identify voxels that represent semantic information, a linearized
encoding model (Nishimoto et al., 2011; Huth et al., 2012, 2016) was fit
to every cortical voxel in each subject’s brain. The linearized encoding
model consisted of one feature space designed to represent semantic in-
formation in the stimuli (the semantic feature space), and four feature
spaces designed to represent low-level linguistic information in the stim-
uli. In the semantic feature space, the semantic content of each word was
represented by the word’s co-occurrence statistics with the 985 words in
Wikipedia’s List of 1000 basic words (Huth et al., 2016). Thus, each
word was represented by a 985-long vector in the semantic feature space.

The co-occurrence statistics were computed over a large text corpus that
included the 11 narrative stories used by Huth et al. (2016), several books
from Project Gutenberg, a wide variety of Wikipedia pages, and a broad
selection of reddit.com user comments (Huth et al., 2016). The four low-
level feature spaces were word rate (1 parameter), number of letters
(1 parameter), letters (26 parameters), and word length variation per TR
(1 parameter). Together, the five feature spaces had 1014 features.

The features passed through three additional preprocessing steps
before being fit to BOLD responses. First, to account for the hemody-
namic response, a separate finite impulse response (FIR) filter with four
delays was fit for each of the 1014 features, resulting in 4056 final fea-
tures. This was accomplished by concatenating copies of the features
delayed by 1, 2, 3, and 4 TRs (;2, 4, 6, and 8 s). Taking the dot product
of this concatenated feature space with a set of linear weights is function-
ally equivalent to convolving the undelayed features with a linear temporal
kernel that has non-zero entries for one-, two-, three-, and four-time point
delays. Second, 10 TRs were discarded from the beginning and the end
(20 TRs total) of each run. Third, each feature was z-scored separately
within each run. This was done so that the features would be on the same
scale as the BOLD responses, which were also z-scored within each run.

A single joint model consisting of the 4056 features were fit to
BOLD responses using banded ridge regression (Nunez-Elizalde et al.,
2019) and the himalaya Python package (Dupré la Tour et al., 2022; see
below, Code accessibility). A separate model was fit for every voxel in
every subject and condition. For every model, a regularization parame-
ter was estimated for each of the five feature spaces using a random
search. In the random search, 1000 normalized hyperparameter candi-
dates were sampled from a Dirichlet distribution and scaled by 30 log-
spaced values ranging from 10�5 to 1020. The best normalized hyper-
parameter candidate and scaling were selected for each feature space
for each voxel. Finally, models were fit again on the BOLD responses
with the selected hyperparameters.

To validate the models, estimated feature weights were used to pre-
dict responses to a separate, held-out validation dataset. Validation stim-
uli for the Narratives condition consisted of two repeated presentations
of the narrative “wheretheressmoke” (Huth et al., 2016). Validation stim-
uli for the Sentences, Semantic Blocks, and Single Words conditions
consisted of two repeated presentations of one run for each condition.
Prediction accuracy was then computed by estimating the contribution
of each feature space to the total prediction accuracy of the joint voxel-
wise model using the “correlation_score_split” function in the himalaya
Python package [see also St-Yves and Naselaris (2018), “Feature map
contribution to the prediction accuracy”]. This function computes the
correlation between the predicted BOLD response from one feature
space and the average recorded BOLD response across the two validation
runs, while accounting for the magnitude of the predictions from each
feature space with respect to the other feature spaces in the joint model.
The contribution from the semantic feature space is shown as semantic
model prediction accuracy in Figures 4 and 5.

Statistical significance for each condition was computed with per-
mutation testing. A null distribution was generated by permuting 10-
TR blocks of the average validation BOLD response 5000 times and
computing the prediction accuracy for each permutation (10 TRs were
blocked to account for temporal autocorrelations in the BOLD signal).
Resulting p values were corrected for multiple comparisons within
each subject using the false discovery rate (FDR) procedure (Benjamini
and Hochberg, 1995).

Tuning shifts
To determine how semantic tuning changes between the Sentences and
Narratives conditions, we looked at the difference between the estimated
semantic model weights in the two conditions. First, temporal informa-
tion was removed from the semantic model weights by averaging across
the four delays for each semantic feature. Semantic model weights were
then normalized by their L2-norm for each voxel, subject, and condition
separately. This was done to ensure that the semantic model weights in
both conditions are on the same numerical scale. Finally, the normalized
semantic model weights estimated in the Sentences condition were
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subtracted from the normalized semantic model
weights estimated in the Narratives condition.

To interpret the resulting difference vec-
tors, we used principal components analysis
(PCA) to recover a low-dimensional subspace.
The difference vector for each voxel in each
subject was scaled by the voxel’s minimum
semantic model prediction accuracy between
the Sentences and Narratives conditions. This
was done to avoid including noise from voxels
that were poorly predicted in either condition.
We then applied PCA to the scaled difference
vectors, yielding 985 PCs per subject. Partial
scree plots showing the proportion of variance
explained by the PCs in each subject are
shown in Extended Data Figure 8-1. We pro-
jected each subject’s difference vectors onto
the first three PCs for interpretation and
visualization.

Cross-condition voxelwise model fitting
Estimated semantic model weights from the
Single Words, Semantic Blocks, and Sentences
conditions were used to predict voxel responses
in the Narratives condition. Prediction accuracy
was computed as Pearson’s correlation coeffi-
cient between the predicted BOLD response
using semantic model weights from the Single
Words, Semantic Blocks, or Sentences condition
and the average BOLD response across the two
validation runs in the Narratives condition. In addition, estimated semantic
model weights from the Single Words and Semantic Blocks conditions
were used to predict voxel responses in the Sentences condition. Prediction
accuracy was computed as Pearson’s correlation coefficient between the pre-
dicted BOLD response using semantic model weights from the Single
Words or Semantic Blocks condition and the average BOLD response
across the two validation runs in the Sentences condition.

Software
All model fitting and analysis was performed using custom software
written in Python, making heavy use of NumPy (Harris et al., 2020) and
SciPy (Virtanen et al., 2020). Analysis and visualizations were developed
using iPython (Perez and Granger, 2007), the interactive programming
and visualization environment jupyter notebook (Kluyver et al., 2016),
Pycortex (Gao et al., 2015), and Matplotlib (Hunter, 2007).

Code accessibility
The himalaya package is publicly available on GitHub (https://github.
com/gallantlab/himalaya; Dupré la Tour et al., 2022).

Results
The goal of this study was to understand whether context affects
evoked SNR and whether it affects semantic representations in the
brain. Previous studies suggest that both evoked SNR and semantic
representations will differ across the four experimental conditions
(Single Words, Semantic Blocks, Sentences, and Narratives). Here,
we analyzed evoked SNR and semantic representations for each of
the four conditions in individual subjects.

To estimate evoked SNR, we computed the reliability of
voxel responses across repetitions of the same stimulus. Several
different sources of noise can influence the reliability of voxel
responses across stimulus repetitions: magnetic inhomogeneity,
voxel response variability, and variability in subject attention
or vigilance. Because these sources are independent across
stimulus repetitions, pooling voxel responses across repeti-
tions averages out the noise and provides a good estimate of
the evoked SNR. In this study, we used explainable variance

(EV) as a measure of reliability and computed the EV for two
repetitions of one run in each condition to estimate evoked
SNR (see Materials and Methods).

Figure 3 shows EV for the four conditions in one typical sub-
ject (S1; see Extended Data Fig. 3-1 for voxels with significant
EV; see Extended Data Fig. 3-2 for unthresholded EV for subjects
2–4). In the Single Words condition, appreciable EV is only
found in a few scattered voxels located in bilateral primary visual
cortex, STS, and inferior frontal gyrus (IFG; Fig. 3a). The num-
ber of voxels with significant EV (p, 0.05, FDR corrected) in
the Single Words condition is 256, 1198, 0, and 0 for subjects 1–
4, respectively. A similar pattern is seen in the Semantic Blocks
condition, where appreciable EV is only found in a few scattered
voxels located in bilateral primary visual cortex, STS, and IFG
(Fig. 3b). The number of voxels with significant EV (p, 0.05,
FDR corrected) in the Semantic Blocks condition is 324, 1613,
1201, and 0 for subjects 1–4, respectively. In contrast, both the
Sentences and Narratives conditions produce high EV in many
voxels located in bilateral visual, parietal, temporal, and prefron-
tal cortices (Fig. 3c,d). The number of voxels with significant EV
(p, 0.05, FDR corrected) in the Sentences condition is 4225,
11 697, 2359, and 7251 for subjects 1–4, respectively. The num-
ber of voxels with significant EV (p, 0.05, FDR corrected) in the
Narratives condition is 7622, 8062, 7059, and 2931 for subjects 1–
4, respectively. Together, these results show that increasing context
increases evoked SNR in bilateral visual, temporal, parietal, and
prefrontal cortices.

To quantify semantic representation, we used a voxelwise
encoding model (VM) procedure and a semantic feature space to
identify voxels that represent semantic information in each con-
dition (Fig. 2). We first extracted semantic features and four
types of low-level linguistic features from the stimulus words in
each condition separately (see Materials and Methods). We then
used banded ridge regression (Nunez-Elizalde et al., 2019) to fit a
joint encoding model for each voxel, subject, and condition.
Finally, we split the joint model prediction accuracy across the
five feature spaces to estimate the prediction accuracy for

Figure 2. Voxelwise modeling. Four subjects read words from the four stimulus conditions while BOLD responses were
recorded. Each stimulus word was projected into a 985-dimensional word embedding space that was independently con-
structed using word co-occurrence statistics from a large corpus (Semantic Features). A finite impulse response (FIR) regularized
regression model was estimated separately for each voxel in every subject and condition using banded ridge regression
(Nunez-Elizalde et al., 2019). The estimated model weights were then used to predict BOLD responses to a separate, held-out
validation stimulus. Model prediction accuracy was quantified as the correlation (r) between the predicted and recorded BOLD
responses to the validation stimulus.
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each feature space. Here, we refer to voxels that had a signifi-
cant semantic model prediction accuracy (see Materials and
Methods) as “semantically selective voxels.”

Figure 4 shows semantic model prediction accuracy for
semantically selective voxels for the four conditions in one typi-
cal subject (S1; see Extended Data Fig. 4-1 for subjects 2-4; see
Extended Data Fig. 4-2 for unthresholded semantic model pre-
diction accuracy for all subjects). In the Single Words condition,
no voxels are semantically selective in any of the four subjects
(Fig. 4a; Extended Data Fig. 4-3, p, 0.05, FDR corrected). In the
Semantic Blocks condition, scattered voxels along the left STS
and left IFG are semantically selective (Fig. 4b, p, 0.05, FDR
corrected). The number of semantically selective voxels
(p, 0.05, FDR corrected) in the Semantic Blocks condition is
708, 0, 0, and 0 for subjects 1–4, respectively (Extended Data Fig.
4-3). In the Sentences condition, voxels in the left angular gyrus,
left STG, bilateral STS, bilateral ventral precuneus, bilateral ven-
tral premotor speech area (sPMv), bilateral superior frontal sul-
cus (SFS), and left superior frontal gyrus (SFG) are semantically
selective (Fig. 4c, p, 0.05, FDR corrected). The number of
semantically selective voxels (p, 0.05, FDR corrected) in the
Sentences condition is 1566, 2581, 0, and 0 for subjects 1–4,
respectively (Extended Data Fig. 4-3). Finally, in the Narratives
condition, voxels in bilateral angular gyrus, bilateral STS, bilat-
eral STG, bilateral temporoparietal junction (TPJ), bilateral
sPMv, bilateral ventral precuneus, bilateral SFS, bilateral
SFG, bilateral IFG, left inferior parietal lobule (IPL), and left
posterior cingulate gyrus are semantically selective (Fig. 4d,
p, 0.05, FDR corrected). The number of semantically selec-
tive voxels (p, 0.05, FDR corrected) in the Narratives condi-
tion is 4745, 7355, 7786, and 1757 for subjects 1–4, respectively
(Extended Data Fig. 4-3). Together, these results suggest that
increasing context increases the representation of semantic in-
formation in bilateral temporal, parietal, and prefrontal corti-
ces. These results also suggest that this effect is highly variable
in individual subjects for non-natural language stimuli (Semantic
Blocks, Sentences) but not for natural language stimuli (Narratives).

The results presented in Figure 4 were obtained in each sub-
ject’s native brain space. To determine how the representation of
semantic information varies across subjects for the four condi-
tions, we transformed the semantic encoding model results
obtained for each subject into the standard MNI brain space
(Deniz et al., 2019). Figure 5 shows the mean unthresholded
model prediction accuracy across subjects (Fig. 5a–d) and the
number of subjects for which each voxel is semantically selective
(Fig. 5e–h) for each condition. In the Single Words condition, no
voxels are semantically selective in any of the four subjects (Fig.
5a,e, p, 0.05, FDR corrected). In the Semantic Blocks condition,
scattered voxels in left STS are semantically selective in two out
of four subjects (Fig. 5b,f, p, 0.05, FDR corrected). In the
Sentences condition, voxels in the bilateral STS, left STG, bilat-
eral ventral precuneus, bilateral angular gyrus, bilateral SFS, and
bilateral premotor cortex are semantically selective in two out of
four subjects (Fig. 5c,g, p, 0.05, FDR corrected). Finally, in the
Narratives condition, voxels in bilateral angular gyrus, bilateral
STS, right STG, right anterior temporal lobe, bilateral SFS and
SFG, left IFG, left IPL, bilateral ventral precuneus, and bilateral
posterior cingulate gyrus are semantically selective in all subjects
(Fig. 5d,h, p, 0.05, FDR corrected), and voxels in left STG and
right IFG are semantically selective in three out of four subjects
(Fig. 5d,h, p, 0.05, FDR corrected). These results are consistent
with those in Figure 4, and they suggest that increasing stimulus
context increases the representation of semantic information

across the cortical surface at the group level. In addition, this
effect is inconsistent across individual subjects for non-natural
stimuli (Semantic Blocks, Sentences) but not natural stimuli
(Narratives).

Because the Narratives condition contains more contextual
information than the other three conditions, we hypothesized
that we would find more semantically selective voxels in the
Narratives condition than in the other three conditions. To test
this, we calculated the difference in the number of semantically
selective voxels between the Narratives condition and each of the
other three conditions. The difference between the Narratives
and Single Words conditions is 4745, 7355, 7786, and 1757 vox-
els for subjects 1–4, respectively (p, 0.05 for all subjects). The
difference between the Narratives and Semantic Blocks condi-
tions is 4037, 7355, 7786, and 1757 voxels for subjects 1–4,
respectively (p, 0.05 for all subjects). Finally, the difference
between the Narratives and Sentences conditions is 3179, 4774,
7786, and 1757 voxels for subjects 1–4, respectively (p, 0.05 for
all subjects). The difference between the Narratives and Single
Words conditions partly reflects the fact that most voxels have
low evoked SNR in the Single Words condition and high evoked
SNR in the Narratives condition (Fig. 3). Because it is impossible
to model noise, differences in evoked SNR across conditions
directly affect the number of voxels that achieve a significant
model fit. The difference between the Narratives and Semantic
Blocks conditions also partly reflects differences in evoked
SNR—for most voxels, evoked SNR is low in the Semantic
Blocks condition and high for the Narratives condition (Fig. 3).
In contrast, the evoked SNR is high for many voxels in both the
Narratives and the Sentences conditions (Fig. 3), so the differ-
ence in the number of semantically selective voxels is unlikely to
be because of differences in evoked SNR. Instead, this result sug-
gests that semantic information is represented more widely
across the cortical surface in the Narratives condition than in the
Sentences condition.

To determine which semantic concepts are represented in
voxels that are semantically selective in the Narratives condition
but not in the Sentences condition, we looked at the semantic
tuning of such voxels. The semantic tuning of each voxel is given
by its 985-dimensional vector of estimated semantic model
weights, one weight for each of the 985 semantic model features
(see Materials and Methods). Since the semantic model has 985
features, it is difficult and impractical to interpret the semantic
tuning of a voxel by looking at each individual semantic feature
directly. Instead, we projected each voxel’s estimated semantic
model weights into a low-dimensional subspace of the semantic
model, and interpreted semantic tuning based on how the
semantic weights projected into this subspace. This low-dimen-
sional subspace was created by applying principal component
analysis (PCA) to the aggregated estimated semantic model
weights of seven subjects in Huth et al. (2016). Applying PCA to
the aggregated semantic model weights returns principal compo-
nents (PCs) that are ordered by how much variance they explain
in the aggregated semantic model weights. The low-dimensional
subspace was defined as the first three PCs of the aggregated
semantic model weights.

To visualize semantic tuning, we projected the estimated
Narratives semantic model weights for each voxel onto the three
PCs, and then we colored each voxel with an RGB color scheme.
For each voxel, the red value indicates the projection onto the
first PC, the green value indicates the projection onto the second
PC, and the blue value indicates the projection onto the third
PC. Figure 6 shows the estimated Narratives semantic model
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weights projected onto the three PCs for two subjects (S1 and S2,
this analysis was not performed for S3 and S4 because they did
not have any semantically selective voxels in the Sentences condi-
tion). In both subjects, most voxels that are semantically selective
in the Narratives condition but not in the Sentences condition
have either a high red value or a high green value. A high red
value corresponds to tuning for concepts related to humans and
social relationships, and a high green value corresponds to tun-
ing for concepts related to materials and measurements. Thus,
voxels that are semantically selective in the Narratives condition
but not in the Sentences condition are tuned to these two seman-
tic categories.

Differences in semantic representation between the Sentences
and Narratives conditions could be limited to a difference in the
number of voxels recruited to represent semantic information in
each condition. However, we hypothesized that differences in
contextual information between the two conditions could also
lead to differences in semantic tuning in the voxels that are
semantically selective in both conditions. To test this hypothe-
sis, the semantic model weights estimated in the Sentences con-
dition were correlated with the semantic model weights estimated
in the Narratives condition for voxels that are semantically selec-
tive in both conditions. Figure 7 shows Pearson’s correlation coef-
ficient between the semantic model weights estimated in the
Sentences condition and the semantic model weights estimated in
the Narratives condition mapped onto the cortical surface of two
subjects (S1 and S2). In both subjects, semantic model weights
for the Sentences and Narratives conditions are on average
moderately correlated (S1 correlation min = �0.319, max=0.817,
mean = 0.344; S2 correlation min =�0.271, max = 0.725,

mean = 0.316). This result shows that semantic tuning changes
in semantically selective voxels between the Sentences and
Narratives conditions.

To determine how semantic tuning changes between the
Sentences and Narratives conditions, we looked at how estimated
semantic model weights differ between the two conditions. For
every voxel that is semantically selective in both conditions, we
subtracted its semantic model weights estimated in the Sentences
condition from its semantic model weights estimated in the
Narratives condition (see Materials and Methods). The resulting
semantic difference vector describes the semantic concept that
changes between the voxel’s semantic tuning in the Sentences
and Narratives conditions. The difference vector resides in the
same 985-dimensional semantic space as the semantic model
weights, so we projected the difference vector into a low-dimen-
sional semantic subspace to interpret its semantic tuning. This
subspace was created by applying PCA to the difference vectors
for each subject separately. The first five PCs explained 47.1% of
the variance in subject S1 and 48.2% of the variance in subject S2
(see Extended Data Fig. 8-1 for partial scree plots), indicating
that the semantic tuning shifts can be described by a relatively
low number of dimensions. Figure 8 shows the projection of the
difference vectors onto the first three PCs for one subject (S1; see
Extended Data Fig. 8-2 for subject S2). Each voxel is colored
according to how positively (red) or negatively (blue) its differ-
ence vector projects onto each of the three PCs. For the first PC,
voxels in bilateral STS and bilateral SFG have a strong positive
projection while voxels in bilateral angular gyrus have a strong
negative projection in both subjects. For the second PC, voxels in
bilateral angular gyrus and superior STS have a strong positive

Figure 3. Explainable variance (EV) for the four conditions across the cortical surface. EV for the four conditions is shown for one subject (S1) on the subject’s flattened cortical surface. EV
was computed as an estimate of the evoked signal-to-noise ratio (SNR). Here, EV is given by the color scale shown in the middle, and voxels that have high EV (i.e., high evoked SNR) appear
yellow (LH: left hemisphere, RH: right hemisphere, AC: auditory cortex, EVC: early visual cortex, LTC: lateral temporal cortex, VTC: ventral temporal cortex, LPC: lateral parietal cortex, MPC:
medial parietal cortex, PFC: prefrontal cortex). The format is the same in all panels. a, EV was computed for the Single Words condition and is shown on the flattened cortical surface of subject
S1. Scattered voxels in bilateral primary visual cortex, superior temporal sulcus (STS), and inferior frontal gyrus (IFG) have high EV. b, EV was computed for the Semantic Blocks condition.
Similar to the Single Words condition, scattered voxels in bilateral primary visual cortex, STS, and IFG have high EV. c, EV was computed for the Sentences condition. Many voxels in bilateral
visual, parietal, temporal, and prefrontal cortices have high EV. d, EV was computed for the Narratives condition. Similar to the Sentences condition, voxels in bilateral visual, parietal, temporal,
and prefrontal cortices have high EV. Together, these results show that increasing context increases evoked SNR in bilateral visual, temporal, parietal, and prefrontal cortices. (See Extended
Data Fig. 3-1 for significant EV voxels for subject S1 and Extended Data Fig. 3-2 for EV for all subjects.)
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projection in both subjects. No voxels have a strong negative pro-
jection in either subject. For the third PC, voxels in right STS
have a strong positive projection in both subjects. No voxels have
a strong negative projection in either subject. These results sug-
gest that semantic tuning shifts between the Sentences and
Narratives conditions are spatially organized across cortex.

To interpret the PCs of the semantic difference vectors, we
looked at the words in the semantic model that were correlated
with each PC (see Extended Data Fig. 8-3 for the 10 most corre-
lated and least correlated words for each PC for each subject).
For subject S1, the first PC is high on words related to interview-
ing and interrogation and low on words related to building and
investing. The second PC is high on words related to packages
and deliveries and low on words related to athletics. The third
PC is high on words related to measurement and low on words
related to family. For subject S2, the first PC is high on words
related to visualization and low on words related to time and
numbers. The second PC is high on words related to travel and
deliveries and low on words related to body parts and actions.
The third PC is high on function words and words related to
numbers and low on informal words and interjections. The first
three PCs for subject S1 are only moderately correlated to the
first three PCs for subject S2: the correlation for the first PC is
0.3144, the correlation for the second PC is 0.5996, and the cor-
relation for the third PC is 0.2351. This suggests that semantic
tuning shifts between the Sentences and Narratives conditions

are subject-dependent. However, additional analysis using a
larger subject pool is needed to determine the individual differ-
ences in semantic tuning.

So far, we have shown that semantic information is repre-
sented more widely across the cortical surface in the Narratives
condition compared with the Single Words, Semantic Blocks, or
Sentences conditions (Figs. 4-6). Next, we wanted to assess
whether semantic model weights estimated using stimuli with lit-
tle context can generalize to natural stimuli. Because of the low
evoked SNR and low semantic model predictions in the Single
Words and Semantic Blocks conditions (Fig. 3; Extended Data
Fig. 4-2), we hypothesized that the semantic model weights esti-
mated in these conditions would generalize more poorly to the
Narratives condition than the Sentences condition. To examine
this, we used semantic model weights estimated in the Single
Words, Semantic Blocks, and Sentences conditions to predict
brain activity in the Narratives condition. We then compared
these cross-condition predictions to within-condition predictions
(Narratives semantic model weights predicting the Narratives
condition). Figure 9 shows the results of this analysis in subject
S1 (see Extended Data Figs. 9-2 and 9-3 for subject S2). Visual
inspection of Figure 9 shows that when semantic model weights
estimated in the Single Words condition are used to predict brain
activity in the Narratives condition (cross-condition predictions),
only scattered voxels across the cortex are predicted (Figure 9a,
blue voxels). Most voxels in bilateral temporal, parietal, and

Figure 4. Semantic model prediction accuracy for the four conditions across the cortical surface. Semantic model prediction accuracy in the four conditions is shown on the flattened cortical
surface of one subject (S1; see Extended Data Figs. 4-1 and 4-2 for all subjects). Voxelwise modeling was first used to estimate semantic model weights in the four conditions. Semantic model
prediction accuracy was then computed as the correlation (r) between the subject’s recorded BOLD responses to the held-out validation stimulus and the BOLD responses predicted by the
semantic model. In each panel, only voxels with significant semantic model prediction accuracy (p, 0.05, FDR corrected) are shown. Prediction accuracy is given by the color scale in the mid-
dle, and voxels that have a high prediction accuracy appear yellow. Voxels for which the semantic model prediction accuracy is not statistically significant are shown in gray (LH: left hemi-
sphere, RH: right hemisphere, AC: auditory cortex, EVC: early visual cortex, LTC: lateral temporal cortex, VTC: ventral temporal cortex, LPC: lateral parietal cortex, MPC: medial parietal cortex,
PFC: prefrontal cortex). a, Semantic model prediction accuracy was computed for the Single Words condition. No voxels are significantly predicted in the Single Words condition (see Extended
Data Fig. 4-3 for the number of semantically selective voxels for the four conditions for all subjects). b, Semantic model prediction accuracy was computed for the Semantic Blocks condition.
The format is the same as panel a. Voxels in left STS and IFG are significantly predicted. c, Semantic model prediction accuracy was computed for the Sentences condition. The format is the
same as panel a. Voxels in left angular gyrus, left STG, bilateral STS, bilateral ventral precuneus, bilateral ventral premotor speech area (sPMv), bilateral superior frontal sulcus (SFS), and left
superior frontal gyrus (SFG) are significantly predicted. d, Semantic model prediction accuracy was computed for the Narratives condition. The format is the same as panel a. Voxels in bilateral
angular gyrus, bilateral STS, bilateral STG, bilateral temporoparietal junction (TPJ), bilateral sPMv, bilateral ventral precuneus, bilateral SFS, bilateral SFG, bilateral IFG, left inferior parietal lobule
(IPL), and left posterior cingulate gyrus are significantly predicted. Together, these results suggest that increasing context increases the representation of semantic information in bilateral tem-
poral, parietal, and prefrontal cortices.
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prefrontal cortex are only predicted by
Narratives semantic model weights (within-
condition predictions) (Figure 9a, red
voxels). Similarly, when semantic model
weights estimated in the Semantic Blocks
condition are used to predict brain activity
in the Narratives condition (cross-condition
predictions), only scattered voxels across the
cortex are predicted (Figure 9b, blue voxels).
A few voxels in left STS are predicted by
both Semantic Blocks semantic model
weights (cross-condition predictions) and
Narratives semantic model weights (within-
condition predictions) (Figure 9b, white
voxels). Most of the remaining voxels in
bilateral temporal, parietal, and prefrontal
cortex are only predicted by Narratives
semantic model weights (within-condi-
tion predictions) (Figure 9b, red voxels).
In contrast, when semantic model weights
estimated in the Sentences condition are
used to predict brain activity in the
Narratives condition (cross-condition
predictions), voxels in bilateral angular
gyrus, bilateral STS, bilateral TPJ, bilateral
sPMv, bilateral ventral precuneus, bilateral
SFG, bilateral IFG, and left SFS are pre-
dicted. These voxels are also predicted by
semantic model weights estimated in the
Narratives condition (within-condition
predictions) (Figure 9c white voxels; See
Extended Data Figure 9-1 for significant
predictions, p , 0.05, FDR corrected).
Some voxels in left IPL, right SFS, bilateral
STG, right anterior temporal lobe, and
bilateral posterior cingulate gyrus are
only predicted by Narratives semantic
model weights (within-condition pre-
dictions) (Figure 9c, red voxels). In
addition, scattered voxels in bilateral
precuneus, right IFG, and portions of
SFS are only predicted by Sentences
semantic model weights (cross-condi-
tion predictions) (Figure 9c, blue vox-
els). These results show that semantic
model weights estimated in conditions
with little context (Single Words or
Semantic Blocks) do not generalize well
to natural language stimuli (Narratives).
In contrast, semantic model weights
estimated in conditions with less con-
text (Sentences) generalize to natural
language stimuli (Narratives) in some
voxels within the temporal, parietal, and
prefrontal regions.

Discussion
The aim of this study was to determine
whether and how context affects semantic
representations in the human brain. Our results show that both
evoked SNR and semantic representations are affected by the
amount of context in the stimulus. First, stimuli with relatively

more context (Narratives, Sentences) evoke brain responses
with higher SNR compared with stimuli with relatively less
context (Semantic Blocks, Single Words; Fig. 3). Second, increasing
the amount of context increases the representation of semantic in-
formation across the cortical surface at the group level (Figs. 4, 5).

Figure 5. Semantic model prediction accuracy across all subjects for the four conditions in standard brain space. Semantic
model prediction accuracy was first computed for each subject and for each condition as described in Figure 4. These individ-
ualized predictions were then projected into the standard MNI brain space. a–d, Average prediction accuracy across the four
subjects is computed for each MNI voxel and shown for each condition on the cortical surface of the MNI brain. Average pre-
diction accuracy is given by the color scale, and voxels with higher prediction accuracy appear brighter (LH: left hemisphere,
RH: right hemisphere, AC: auditory cortex, EVC: early visual cortex, LTC: lateral temporal cortex, VTC: ventral temporal cortex,
LPC: lateral parietal cortex, MPC: medial parietal cortex, PFC: prefrontal cortex). a, In the Single Words condition, average pre-
diction accuracy is low across the cortical surface. b, In the Semantic Blocks condition, average prediction accuracy is high in
voxels in left anterior STS. c, In the Sentences condition, average prediction accuracy is high in bilateral STS, STG, anterior
temporal lobe, angular gyrus, ventral precuneus, SFS, and SFG. d, In the Narratives condition, average prediction accuracy is
very high in bilateral STS, STG, MTG, anterior temporal lobe, angular gyrus, IPL, ventral precuneus, posterior cingulate gyrus,
Broca’s area, IFG, SFS, SFG, and left posterior inferior temporal sulcus. e–h, For each condition, statistical significance of pre-
diction accuracies was determined in each subject’s native brain space and then projected into the MNI brain space. The
number of subjects with significant prediction accuracy is shown for each voxel on the cortical surface of the MNI brain. The
number of significant subjects is given by the color scale shown at bottom. Dark red voxels are significantly predicted in all
subjects, and dark blue voxels are not significantly predicted in any subjects. e, In the Single Words condition, no voxels are
semantically selective for any subjects. f, In the Semantic Blocks condition, scattered voxels in left STS are semantically selec-
tive in two out of four subjects. g, In the Sentences condition, voxels in bilateral STS, STG, angular gyrus, ventral precuneus,
and SFS are semantically selective in two out of four subjects. h, In the Narratives condition, voxels in bilateral angular gyrus,
bilateral STS, anterior temporal lobe, SFS, SFG, IFG, ventral precuneus, posterior cingulate gyrus, and right STG are semanti-
cally selective in all four subjects. The results shown here are consistent with those in Figure 4, and they suggest that increas-
ing context increases the representation of semantic information across the cortical surface at the group level but not for
individual subjects.
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However, in individual subjects, only the Narratives condition con-
sistently increased the representation of semantic information com-
pared with the Single Words condition (Figs. 4, 5). Third,
increasing the amount of context changes the semantic tuning of
semantically selective voxels across the cortical surface (Figs. 6-8).
These results strongly imply that neuroimaging studies that use iso-
lated words or sentences do not fully map the functional brain rep-
resentations that underlie natural language comprehension (Fig. 9).
By using the voxelwise encoding modeling approach with a specific
semantic feature space, we demonstrate for the first time where
semantic information is represented when different levels of

contextual information are present in the stimuli. Thus, our results
are much more specific to semantic representations than results in
past studies.

Our observations that increasing context increases both the
evoked SNR and the cortical representation of semantic informa-
tion at the group level are fully consistent with results from pre-
vious neuroimaging studies. Several previous studies found that
stimuli with more context evoke larger, more widespread pat-
terns of brain activity (Mazoyer et al., 1993; Xu et al., 2005;
Jobard et al., 2007), that brain activity evoked for individual
words is modulated by context (Just et al., 2017), and that brain
activity evoked by stimuli with more context are more reliable
than those evoked by stimuli with less context (Lerner et al.,
2011). Furthermore, previous studies that used narrative stimuli
(Wehbe et al., 2014; Huth et al., 2016; Pereira et al., 2018; Deniz
et al., 2019; Hsu et al., 2019; Popham et al., 2021) identified

Figure 6. Semantic tuning of voxels that are semantically selective in the Narratives con-
dition but not the Sentences condition. Semantic tuning is shown on the flattened cortical
surface of two subjects (S1 and S2) for voxels that are semantically selective in the
Narratives condition but not in the Sentences condition. These voxels are in the bilateral
superior temporal sulcus, middle temporal gyrus, precuneus, inferior frontal gyrus, and ven-
trolateral and dorsolateral prefrontal cortex. Semantic model weights estimated in the
Narratives condition were projected into a low-dimensional subspace created by performing
principal components analysis (PCA) on semantic model weights estimated in Huth et al.
(2016). Each voxel is colored according to the projection of its Narratives semantic model
weights onto the first (red), second (green), and third (blue) PCs. The color wheel legend
shows the semantic concepts associated with different colors. Most voxels in both subjects
have a high red value or a high green value. A high red value corresponds to tuning for con-
cepts related to humans and social relationships, and a high green value corresponds to tun-
ing for concepts related to materials and measurements (LH: left hemisphere, RH: right
hemisphere, AC: auditory cortex, EVC: early visual cortex, LTC: lateral temporal cortex, VTC:
ventral temporal cortex, LPC: lateral parietal cortex, MPC: medial parietal cortex, PFC: pre-
frontal cortex).

Figure 7. Correlation of semantic model weights estimated in the Sentences and
Narratives conditions. Pearson’s correlation coefficient between semantic model weights esti-
mated in the Sentences condition and semantic model weights estimated in the Narratives
condition is plotted on the flattened cortical surface of two subjects (S1 and S2). Only voxels
that are semantically selective in both conditions are shown. These include voxels in the
superior temporal sulcus and prefrontal cortex in both hemispheres in both subjects. These
voxels are on average moderately correlated between these two conditions (S1 correlation
min = �0.319, max = 0.817, mean= 0.344; S2 correlation min = �0.271, max = 0.725,
mean= 0.316), indicating that the semantic model weights estimated in the Sentences and
Narratives conditions point in different directions in the semantic space. This shows that
semantic tuning changes between the Sentences and Narratives conditions (LH: left hemi-
sphere, RH: right hemisphere, AC: auditory cortex, EVC: early visual cortex, LTC: lateral tem-
poral cortex, VTC: ventral temporal cortex, LPC: lateral parietal cortex, MPC: medial parietal
cortex, PFC: prefrontal cortex).
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many more voxels involved in semantic processing than studies
that used isolated words or sentences (for reviews, see Binder et
al., 2009; Price, 2010, 2012).

Our results are also consistent with prior studies that have
shown a broadly distributed semantic network that represents

the meaning of language (Binder et al., 2009; Huth et al., 2016;
Popham et al., 2021). One of the interesting aspects of the
semantic network is that each semantic concept appears to
be represented in multiple distinct brain areas. One potential
hypothesis is that these repeated patterns actually represent
different aspects of each of the semantic concepts, but they
appear to be the same because of current limitations in our
ability to measure and model brain activity. If this is true,
then one might expect that selectivity in this network would
increase as a subject focuses on a concept for a longer period
of time, or as increasing semantic context is provided.

However, there are several important differences between the
results we reported here and those reported in previous neuroi-
maging studies. First, past studies that used isolated sentences
found left IFG involved in semantic processing (Constable et al.,
2004; Rodd et al., 2005; Humphries et al., 2007). We found few
semantically selective voxels scattered in left IFG in two out of
four subjects in the Sentences condition (Figs. 4, 5). Second, past
studies that used isolated words found bilateral STS, bilateral lat-
eral sulcus, left IFG, left MTG, and left ITG involved in lexical
processing (Mazoyer et al., 1993; Booth et al., 2002; Xu et al.,
2005; Jobard et al., 2007; Lerner et al., 2011). In contrast, we did
not find any semantically selective voxels in the Single Words
condition (Figs. 4, 5). Finally, one previous study looked at brain
activity evoked by a stimulus conceptually similar to Semantic
Blocks (Mollica et al., 2020). In the study, Mollica et al. (2020)
used sentences that were scrambled such that nearby words
could be combined into meaningful phrases. They found that the
brain activity evoked by scrambled sentences was similar to the
brain activity evoked by unscrambled sentences in left IFG, left
middle frontal gyrus, left temporal lobe, and left angular gyrus.
In contrast, we found voxels that were semantically selective in
both the Semantic Blocks and Sentences conditions in left STS
(Figs. 4, 5). We only found a few scattered voxels in IFG that
were semantically selective in both of these conditions, and this
result was not consistent across subjects (Extended Data Fig. 4-2;
Fig. 5). However, we also found that voxels in IFG were well pre-
dicted when the semantic model estimated in the Sentences con-
dition was used to predict brain activity in the Narratives
condition (Fig. 9; Extended Data Fig. 9-1). These two results sug-
gest that IFG was involved in semantic processing when subjects
read sentences (e.g., Sentences and Narratives conditions) but
not when subjects read unstructured, semantically similar words
(e.g., in the Semantic Blocks condition).

The inconsistencies between this study and past studies most
likely stem from five major methodological differences between
this study and those earlier studies. First, we avoided smoothing
our data before performing analyses. We performed our analyses
for each subject in their native brain space, and we did not perform
any spatial smoothing across voxels. In contrast, most previous
studies performed normalization procedures to transform their
data into a standard brain space and applied a spatial smoothing
operation across voxels (Lindquist, 2008; Carp, 2012). Spatial
smoothing and normalization procedures can incorrectly assign
signal to voxels and average away meaningful signal and individ-
ual variability in language processing (Steinmetz and Seitz, 1991;
Fedorenko and Kanwisher, 2009; Fedorenko et al., 2012; Huth et
al., 2016; Deniz et al., 2019). Thus, brain regions identified by
past studies may be more relevant at the group level than in indi-
vidual subjects. These smoothing procedures likely contribute to
the inconsistencies observed between past studies and this study.

Second, we used an explicit computational model to identify
semantically selective voxels. In contrast, most previous studies

Figure 8. Semantic tuning shifts between the Sentences and Narratives conditions.
Semantic model weights estimated in the Sentences condition were subtracted from seman-
tic model weights estimated in the Narratives condition. PCA was then applied to the result-
ing difference vectors for each subject separately. The projection of the difference vectors
onto the first three PCs is shown on the flattened cortical surface of one subject (S1; see
Extended Data Fig. 8-2 for subject S2; see Extended Data Fig. 8-1 for the amount of variance
explained by each of the first five PCs for each subject). Only voxels that are semantically
selective in both conditions are shown. Projection strength is given by the color scale. Voxels
that project onto one end of a PC appear red, while voxels that project onto the opposite
end of the same PC appear blue (LH: left hemisphere, RH: right hemisphere, AC: auditory cor-
tex, EVC: early visual cortex, LTC: lateral temporal cortex, VTC: ventral temporal cortex, LPC:
lateral parietal cortex, MPC: medial parietal cortex, PFC: prefrontal cortex). a, The first PC for
subject S1 is shown. Voxels in bilateral STS and bilateral SFG are red while voxels in bilateral
angular gyrus are blue in both subjects. b, The second PC for subject S1 is shown. Voxels in
bilateral angular gyrus and superior STS are red while no voxels are blue in both subjects. c,
The third PC for subject S1 is shown. Voxels in right STS are red while no voxels are blue in
both subjects. The 10 most and least correlated words for each PC are shown in Extended
Data Figure 8-3. These results show that semantic tuning shifts between the Sentences and
Narratives conditions are spatially organized across cortex.
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Figure 9. Generalization of semantic model weights estimated in the Single Words, Semantic Blocks, and Sentences conditions to the Narratives condition for subject S1. a, Semantic model
weights estimated in the Single Words condition were used to predict BOLD responses to the held-out validation stimulus in the Narratives condition. (left) The resulting cross-condition seman-
tic model prediction accuracies are shown with the within-condition Narratives semantic model prediction accuracies on the flattened cortical surface of subject S1 with a 2D colormap (see
Extended Data Fig. 9-2 for subject S2; LH: left hemisphere, RH: right hemisphere, AC: auditory cortex, EVC: early visual cortex, LTC: lateral temporal cortex, VTC: ventral temporal cortex, LPC:
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identified semantic brain regions by contrasting different experi-
mental conditions (Binder et al., 2008, 2009; Price, 2012).
Although past studies designed their experimental conditions to
isolate brain activity involved in semantic processing (Binder et
al., 2008, 2009), there could be unexpected differences unrelated
to semantic processing between the conditions. For example,
experiments that contrast a semantic task with a phonological
task (Binder et al., 2008, 2009) may have task difficulty as a con-
found. As a result, it is possible that some semantic brain areas
identified by past studies are actually involved in processing the
unexpected differences rather than semantics. We would likely
not have identified such brain areas in this study, since our
semantic model only contains information about semantics.

Third, we evaluated semantic model prediction accuracy on
a separate, held-out validation dataset. In contrast, most previ-
ous studies drew inferences from analyses performed on only
one dataset without a validation dataset (Binder et al., 2009).
Performing analyses on only one dataset can lead to inflated
results that are overfit to the dataset (Soch et al., 2016). Thus,
some semantic brain areas identified by past studies may only
be relevant for the specific stimuli, experimental design, or data
used in those studies. Such study-specific brain areas would not
generalize to other studies, such as this study.

Fourth, we collected a relatively large amount of fMRI data
per subject from four subjects. In contrast, most previous
studies collected a small amount of fMRI data per subject
from many (15–30) subjects. Because fMRI data are noisy,
most previous studies either averaged their data across sub-
jects and/or smoothed their data to observe the effects of in-
terest. However, as discussed earlier, smoothing and averaging
fMRI data can lead to incomplete conclusions about language
processing in the brain (Steinmetz and Seitz, 1991; Fedorenko

and Kanwisher, 2009; Fedorenko et al., 2012; Huth et al.,
2016; Deniz et al., 2019). In this study, we avoided averaging
across subjects and smoothing procedures by collecting a rela-
tively large amount of data per subject. Moreover, each subject
provided a complete replication of all analyses because each
subject had their own model fitting and validation data. Thus,
although there are fewer subjects in this study than in previous
studies, it is likely that our findings will generalize to new subjects.

Finally, subjects in our study passively read the stimulus
words, which allowed us to directly compare the Narratives con-
dition with the other three conditions. In contrast, many past
studies of semantic processing used active tasks involving lexical
decisions (Binder et al., 2003), matching (Vandenberghe et al.,
1996), or monitoring (Démonet et al., 1992). Active tasks are
thought to increase subject engagement, which can increase
evoked SNR. Thus, if we had used an active task, the effect of
context on evoked SNRmight have been even larger than the dif-
ferences that we report here. In addition, different active tasks
can affect semantic processing differently in the brain (Toneva et
al., 2020). Therefore, task effects likely contributed to the incon-
sistencies observed between past studies and this study.

To our knowledge, no previous language neuroimaging stud-
ies have looked at whether stimulus context affects semantic tun-
ing. One interesting aspect of our results is that the semantic
tuning shifts are different for subjects S1 and S2. One potential
explanation for the discrepancy across subjects could be noise.
Another possible explanation is that since both subjects saw the
same stimuli in the Sentences and Narratives conditions, the dif-
ference in tuning shifts could be because of individual differences
in attention rather than differences in the stimuli. Without a nar-
rative strucure, subjects are likely to attend to different parts of a
sentence; in contrast, a narrative structure may lead subjects to
attend to similar semantic categories in a sentence. This explana-
tion is consistent with a previous study from our lab showing
that many voxels across cortex shift their tuning toward attended
semantic categories (Çukur et al., 2013). However, further
research needs to be conducted about context-dependent seman-
tic tuning shifts during language comprehension.

Many language neuroimaging studies use isolated sentences
to localize the language network (Fedorenko et al., 2010; Scott et
al., 2017; Wilson et al., 2017). These localizers contrast isolated
sentences with nonwords (i.e., sentences . nonwords) to iden-
tify regions of interest (ROIs) in the brain involved in language
processing. The identified ROIs often include left IFG, left mid-
dle frontal gyrus, left temporal lobe, left angular gyrus, and right
temporal lobe. Consistent with these localizers, many voxels in
the listed ROIs have high EV in the Sentences condition. In fact,
the raw EV value in the Sentences condition is higher than the
raw EV value in the Narratives condition in many voxels, sug-
gesting that the Sentences condition engages the language net-
work more than the Narratives condition. This difference in EV
could be because the Narratives condition is more predictable
than the Sentences condition, so the second presentation of the
validation stimulus could elicit less brain activity than the first
presentation of the validation stimulus in the Narratives condi-
tion. In addition, we find fewer semantically selective voxels in
the Sentences condition than in the Narratives condition in all
subjects (Figs. 4, 5). Instead, we find that out of the five feature
spaces we used in this study, the “number of letters” feature space
has the highest prediction accuracy in the Sentences condition in
all subjects. This suggests that a substantial portion of brain acti-
vations evoked by isolated sentences reflects the effect of low
level features. However, the variance in the Sentences condition

/

lateral parietal cortex, MPC: medial parietal cortex, PFC: prefrontal cortex). The axes of the
colormap correspond to the cross-condition (blue) and within-condition (red) prediction accu-
racies. Voxels where the within-condition prediction accuracy is high and the cross-condition
prediction accuracy is low appear red. Voxels where the within-condition prediction accuracy
is low and the cross-condition prediction accuracy is high appear blue. Voxels where both
the within-condition prediction accuracy and the cross-condition prediction accuracy are high
appear white. Finally, voxels where both the within-condition prediction accuracy and the
cross-condition prediction accuracy are low appear black. In this comparison, many voxels
throughout bilateral temporal, parietal, and prefrontal cortex are red. In addition, there are a
few blue and white voxels scattered across the cortical surface. (right) Cross-condition
semantic model prediction accuracy (y-axis) is plotted against within-condition Narratives
semantic model prediction accuracy (x-axis) for each cortical voxel. In most voxels, the cross-
condition prediction accuracy is worse than the Narratives prediction accuracy. b, Semantic
model weights estimated in the Semantic Blocks condition were used to predict BOLD
responses to the held-out validation stimulus in the Narratives condition. The format is the
same as panel a. Many voxels across bilateral temporal, parietal, and prefrontal cortex are
red. Voxels located in the left superior temporal sulcus (STS) are white, and a few voxels
scattered across the cortical surface are blue. In most voxels, the cross-condition prediction
accuracy is worse than the Narratives prediction accuracy. c, Semantic model weights esti-
mated in the Sentences condition were used to predict BOLD responses to the held-out vali-
dation stimulus in the Narratives condition. The format is the same as panel a. Voxels
located in left IPL, right SFS, bilateral STG, and bilateral posterior cingulate gyrus are red.
Voxels located in bilateral angular gyrus, bilateral STS, portions of TPJ, bilateral sPMv, bilat-
eral ventral precuneus, bilateral SFG, bilateral IFG, and left SFS are white. The cross-condition
prediction accuracy in these white voxels reach statistical significance (see Extended Data Fig.
9-1 for S1 and Extended Data Fig. 9-3 for S2). This suggests that semantic model weights
estimated in the Sentences condition generalize to the Narratives condition in these voxels.
Scattered voxels located in bilateral precuneus, right IFG, and portions of SFS are blue. In
many voxels, the cross-condition prediction accuracy is worse than the Narratives prediction
accuracy. Together, these results show that semantic model weights estimated in conditions
with less context do not generalize well to natural stories.
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could also be explained by a different feature space that we did
not include in our analyses for this paper.

Our study used a semantic model to determine whether
and how semantic representations change across the four
conditions. Although our semantic model is able to capture
the semantic properties of individual words, it nonetheless
has some limitations. First, because this model likely cap-
tures some narrative information that is correlated with
word-level semantic information, some of the brain activity
predicted by our semantic model may therefore reflect higher-
level linguistic or domain-general representations (Fedorenko
et al., 2012; Blank and Fedorenko, 2017). Second, our semantic
model has one static embedding for each word, and it does not
differentiate between different word senses or different contexts
in which a word may appear. Therefore, our semantic model
may not predict voxel activity as well as other models that inte-
grate contextual semantic information differently (Jain and
Huth, 2018; Toneva and Wehbe, 2019; Schmitt et al., 2021;
Schrimpf et al., 2021; Goldstein et al., 2022; Heilbron et al.,
2022), specifically in the Sentences and Narratives conditions.
The voxelwise modeling framework provides a straightfor-
ward method for evaluating alternative semantic models
directly by construction of appropriate feature spaces.
Therefore, a valuable direction for future research would be to
examine other semantic models, and to include language
models that explicitly account for factors such as contextual
information, narrative structure, metaphor, and humor.

In conclusion, our results show that increasing the amount of
stimulus context increases the SNR of evoked brain responses,
increases the representation of semantic information in the
brain, and affects the semantic tuning of semantically selective
voxels. These results imply that neuroimaging studies that use
isolated words or sentences to study semantic processing or to
localize the language network (Fedorenko et al., 2010) may pro-
vide an incomplete picture of semantic processing in daily life.
Although natural language stimuli are much more complex than
isolated words and sentences, the development and validation of
the voxelwise encoding model framework for language process-
ing (Huth et al., 2016; de Heer et al., 2017; Deniz et al., 2019;
Popham et al., 2021) has made it possible to rigorously test
hypotheses about semantic processing with natural language
stimuli. To ensure that the results of neuroimaging study gener-
alize to natural language processing, we suggest that future stud-
ies of semantic processing should use more naturalistic stimuli.
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