.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "_auto_examples/multiple_kernel_ridge/plot_mkr_2_solvers.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr__auto_examples_multiple_kernel_ridge_plot_mkr_2_solvers.py: Multiple-kernel ridge solvers ============================= This example demonstrates the different strategies to solve the multiple kernel ridge regression: the *random search*, and the *hyper-gradient descent*. The *random-search* strategy samples some kernel weights vectors from a Dirichlet distribution, then for each vector, it fits a ``KernelRidgeCV`` model and computes a cross-validation score for all targets. Then it selects for each target the kernel weight vector leading to the highest cross-validation score (e.g. the highest `R^2` value). Extensively sampling the kernel weights space is exponentially expensive with the number of kernels, therefore this method is computationally expensive for a large number of kernels. However, since it reuses most of the computations for all targets, it scales very well with the number of targets. The *hyper-gradient descent* strategy takes a different route. It starts with an initial kernel weights vector per target, and updates it iteratively following the hyperparameter gradient, computed over cross-validation. As it computes a hyper-gradient descent for each target, it is more expensive computationally for large number of targets. However, the hyper-gradient descent scales very well with the number of kernels. .. GENERATED FROM PYTHON SOURCE LINES 24-40 .. code-block:: default import numpy as np import matplotlib.pyplot as plt from himalaya.backend import set_backend from himalaya.kernel_ridge import generate_dirichlet_samples from himalaya.kernel_ridge import KernelRidgeCV from himalaya.kernel_ridge import MultipleKernelRidgeCV from himalaya.kernel_ridge import Kernelizer from himalaya.kernel_ridge import ColumnKernelizer from himalaya.utils import generate_multikernel_dataset from sklearn.pipeline import make_pipeline from sklearn import set_config set_config(display='diagram') .. GENERATED FROM PYTHON SOURCE LINES 42-43 In this example, we use the ``torch_cuda`` backend, and fit the model on GPU. .. GENERATED FROM PYTHON SOURCE LINES 43-46 .. code-block:: default backend = set_backend("torch_cuda", on_error="warn") .. GENERATED FROM PYTHON SOURCE LINES 47-51 Generate a random dataset ------------------------- We start by generating some arbitrary scalings per kernel and targets, using samples on a Dirichlet distribution. .. GENERATED FROM PYTHON SOURCE LINES 51-56 .. code-block:: default n_kernels = 3 n_targets = 50 n_clusters = 2 .. GENERATED FROM PYTHON SOURCE LINES 57-58 To create some clusters of weights, we take a few kernel weights samples. .. GENERATED FROM PYTHON SOURCE LINES 58-62 .. code-block:: default kernel_weights = generate_dirichlet_samples(n_clusters, n_kernels, concentration=[.3], random_state=105) .. GENERATED FROM PYTHON SOURCE LINES 63-64 Then, we duplicate them, and add some noise, to get clusters. .. GENERATED FROM PYTHON SOURCE LINES 64-73 .. code-block:: default noise = 0.05 kernel_weights = backend.to_numpy(kernel_weights) kernel_weights = np.tile(kernel_weights, (n_targets // n_clusters, 1)) kernel_weights += np.random.randn(n_targets, n_kernels) * noise # We finish with a projection on the simplex, making kernel weights sum to one. kernel_weights[kernel_weights < 0] = 0. kernel_weights /= np.sum(kernel_weights, 1)[:, None] .. GENERATED FROM PYTHON SOURCE LINES 74-80 Then, we generate a random dataset, using the arbitrary scalings. - X_train : array of shape (n_samples_train, n_features) - X_test : array of shape (n_samples_test, n_features) - Y_train : array of shape (n_samples_train, n_targets) - Y_test : array of shape (n_samples_test, n_targets) .. GENERATED FROM PYTHON SOURCE LINES 80-88 .. code-block:: default (X_train, X_test, Y_train, Y_test, kernel_weights, n_features_list) = generate_multikernel_dataset( n_kernels=n_kernels, n_targets=n_targets, n_samples_train=600, n_samples_test=300, kernel_weights=kernel_weights, random_state=42) feature_names = [f"Feature space {ii}" for ii in range(len(n_features_list))] .. GENERATED FROM PYTHON SOURCE LINES 89-93 Define a ``ColumnKernelizer`` ----------------------------- We define a column kernelizer, which we will use to precompute the kernels in a pipeline. .. GENERATED FROM PYTHON SOURCE LINES 93-105 .. code-block:: default # Find the start and end of each feature space X in Xs start_and_end = np.concatenate([[0], np.cumsum(n_features_list)]) slices = [ slice(start, end) for start, end in zip(start_and_end[:-1], start_and_end[1:]) ] kernelizers = [(name, Kernelizer(), slice_) for name, slice_ in zip(feature_names, slices)] column_kernelizer = ColumnKernelizer(kernelizers) .. GENERATED FROM PYTHON SOURCE LINES 106-109 Define the models ----------------- We define the first model, using the random search solver. .. GENERATED FROM PYTHON SOURCE LINES 109-124 .. code-block:: default # (We pregenerate the Dirichlet random samples, to latter plot them.) kernel_weights_sampled = generate_dirichlet_samples(n_samples=20, n_kernels=n_kernels, concentration=[1.], random_state=0) alphas = np.logspace(-10, 10, 41) solver_params = dict(n_iter=kernel_weights_sampled, alphas=alphas, n_targets_batch=200, n_alphas_batch=20, n_targets_batch_refit=200, jitter_alphas=True) model_1 = MultipleKernelRidgeCV(kernels="precomputed", solver="random_search", solver_params=solver_params) .. GENERATED FROM PYTHON SOURCE LINES 125-126 We define the second model, using the hyper_gradient solver. .. GENERATED FROM PYTHON SOURCE LINES 126-134 .. code-block:: default solver_params = dict(max_iter=30, n_targets_batch=200, tol=1e-3, initial_deltas="ridgecv", max_iter_inner_hyper=1, hyper_gradient_method="direct") model_2 = MultipleKernelRidgeCV(kernels="precomputed", solver="hyper_gradient", solver_params=solver_params) .. GENERATED FROM PYTHON SOURCE LINES 135-136 We fit the two models on the train data. .. GENERATED FROM PYTHON SOURCE LINES 136-140 .. code-block:: default pipe_1 = make_pipeline(column_kernelizer, model_1) pipe_1.fit(X_train, Y_train) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [ ] 0% | 0.00 sec | 20 random sampling with cv | [.. ] 5% | 0.11 sec | 20 random sampling with cv | [.... ] 10% | 0.23 sec | 20 random sampling with cv | [...... ] 15% | 0.31 sec | 20 random sampling with cv | [........ ] 20% | 0.42 sec | 20 random sampling with cv | [.......... ] 25% | 0.54 sec | 20 random sampling with cv | [............ ] 30% | 0.62 sec | 20 random sampling with cv | [.............. ] 35% | 0.71 sec | 20 random sampling with cv | [................ ] 40% | 0.82 sec | 20 random sampling with cv | [.................. ] 45% | 0.93 sec | 20 random sampling with cv | [.................... ] 50% | 1.02 sec | 20 random sampling with cv | [...................... ] 55% | 1.10 sec | 20 random sampling with cv | [........................ ] 60% | 1.21 sec | 20 random sampling with cv | [.......................... ] 65% | 1.33 sec | 20 random sampling with cv | [............................ ] 70% | 1.44 sec | 20 random sampling with cv | [.............................. ] 75% | 1.55 sec | 20 random sampling with cv | [................................ ] 80% | 1.64 sec | 20 random sampling with cv | [.................................. ] 85% | 1.72 sec | 20 random sampling with cv | [.................................... ] 90% | 1.84 sec | 20 random sampling with cv | [...................................... ] 95% | 1.92 sec | 20 random sampling with cv | [........................................] 100% | 2.00 sec | 20 random sampling with cv | .. raw:: html
Pipeline(steps=[('columnkernelizer',
                     ColumnKernelizer(transformers=[('Feature space 0',
                                                     Kernelizer(),
                                                     slice(0, 1000, None)),
                                                    ('Feature space 1',
                                                     Kernelizer(),
                                                     slice(1000, 2000, None)),
                                                    ('Feature space 2',
                                                     Kernelizer(),
                                                     slice(2000, 3000, None))])),
                    ('multiplekernelridgecv',
                     MultipleKernelRidgeCV(kernels='precomputed',
                                           solver_params={'alphas': array([1.00000000e-10, 3.1622776...
            [0.0967, 0.7845, 0.1188],
            [0.6945, 0.1770, 0.1285],
            [0.1278, 0.6189, 0.2533],
            [0.4615, 0.0104, 0.5280],
            [0.1979, 0.2006, 0.6015],
            [0.5289, 0.2058, 0.2653],
            [0.5074, 0.0264, 0.4662],
            [0.7480, 0.1591, 0.0930],
            [0.2262, 0.2698, 0.5040],
            [0.1123, 0.8667, 0.0209],
            [0.1595, 0.1198, 0.7207],
            [0.2433, 0.5232, 0.2335]], device='cuda:0', dtype=torch.float64),
                                                          'n_targets_batch': 200,
                                                          'n_targets_batch_refit': 200}))])
Please rerun this cell to show the HTML repr or trust the notebook.


.. GENERATED FROM PYTHON SOURCE LINES 141-144 .. code-block:: default pipe_2 = make_pipeline(column_kernelizer, model_2) pipe_2.fit(X_train, Y_train) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [ ] 0% | 0.00 sec | hypergradient_direct | [ ] 0% | 0.00 sec | hypergradient_direct | [. ] 3% | 0.09 sec | hypergradient_direct | [.. ] 7% | 0.10 sec | hypergradient_direct | [.... ] 10% | 0.11 sec | hypergradient_direct | [..... ] 13% | 0.12 sec | hypergradient_direct | [...... ] 17% | 0.13 sec | hypergradient_direct | [........ ] 20% | 0.14 sec | hypergradient_direct | [......... ] 23% | 0.16 sec | hypergradient_direct | [.......... ] 27% | 0.17 sec | hypergradient_direct | [............ ] 30% | 0.18 sec | hypergradient_direct | [............. ] 33% | 0.19 sec | hypergradient_direct | [.............. ] 37% | 0.20 sec | hypergradient_direct | [................ ] 40% | 0.21 sec | hypergradient_direct | [................. ] 43% | 0.22 sec | hypergradient_direct | [.................. ] 47% | 0.23 sec | hypergradient_direct | [.................... ] 50% | 0.25 sec | hypergradient_direct | [..................... ] 53% | 0.26 sec | hypergradient_direct | [...................... ] 57% | 0.27 sec | hypergradient_direct | [........................ ] 60% | 0.28 sec | hypergradient_direct | [......................... ] 63% | 0.29 sec | hypergradient_direct | [.......................... ] 67% | 0.30 sec | hypergradient_direct | [............................ ] 70% | 0.31 sec | hypergradient_direct | [............................. ] 73% | 0.32 sec | hypergradient_direct | [.............................. ] 77% | 0.34 sec | hypergradient_direct | [................................ ] 80% | 0.35 sec | hypergradient_direct | [................................. ] 83% | 0.36 sec | hypergradient_direct | [.................................. ] 87% | 0.37 sec | hypergradient_direct | [.................................... ] 90% | 0.38 sec | hypergradient_direct | [..................................... ] 93% | 0.39 sec | hypergradient_direct | [...................................... ] 97% | 0.40 sec | hypergradient_direct | [........................................] 100% | 0.49 sec | hypergradient_direct | .. raw:: html
Pipeline(steps=[('columnkernelizer',
                     ColumnKernelizer(transformers=[('Feature space 0',
                                                     Kernelizer(),
                                                     slice(0, 1000, None)),
                                                    ('Feature space 1',
                                                     Kernelizer(),
                                                     slice(1000, 2000, None)),
                                                    ('Feature space 2',
                                                     Kernelizer(),
                                                     slice(2000, 3000, None))])),
                    ('multiplekernelridgecv',
                     MultipleKernelRidgeCV(kernels='precomputed',
                                           solver='hyper_gradient',
                                           solver_params={'hyper_gradient_method': 'direct',
                                                          'initial_deltas': 'ridgecv',
                                                          'max_iter': 30,
                                                          'max_iter_inner_hyper': 1,
                                                          'n_targets_batch': 200,
                                                          'tol': 0.001}))])
Please rerun this cell to show the HTML repr or trust the notebook.


.. GENERATED FROM PYTHON SOURCE LINES 145-152 Plot the convergence curves --------------------------- First convergence curve. For the random search, ``cv_scores`` gives the scores for each sampled kernel weights vector. The convergence curve is thus the current maximum for each target. .. GENERATED FROM PYTHON SOURCE LINES 152-164 .. code-block:: default cv_scores = backend.to_numpy(pipe_1[1].cv_scores_) current_max = np.maximum.accumulate(cv_scores, axis=0) mean_current_max = np.mean(current_max, axis=1) x_array = np.arange(1, len(mean_current_max) + 1) plt.plot(x_array, mean_current_max, '-o') plt.grid("on") plt.xlabel("Number of kernel weights sampled") plt.ylabel("L2 negative loss (higher is better)") plt.title("Convergence curve, averaged over targets") plt.show() .. image:: /_auto_examples/multiple_kernel_ridge/images/sphx_glr_plot_mkr_2_solvers_001.png :alt: Convergence curve, averaged over targets :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 165-166 Plot the second convergence curve. .. GENERATED FROM PYTHON SOURCE LINES 166-178 .. code-block:: default cv_scores = backend.to_numpy(pipe_2[1].cv_scores_) mean_cv_scores = np.mean(cv_scores, axis=1) x_array = np.arange(1, len(mean_cv_scores) + 1) plt.plot(x_array, mean_cv_scores, '-o') plt.grid("on") plt.xlabel("Number of gradient iterations") plt.ylabel("L2 negative loss (higher is better)") plt.title("Convergence curve, averaged over targets") plt.show() .. image:: /_auto_examples/multiple_kernel_ridge/images/sphx_glr_plot_mkr_2_solvers_002.png :alt: Convergence curve, averaged over targets :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 179-184 Compare with a ``KernelRidgeCV`` -------------------------------- Compare to a baseline ``KernelRidgeCV`` model with all the concatenated features. Comparison is performed using the prediction scores on the test set. .. GENERATED FROM PYTHON SOURCE LINES 184-189 .. code-block:: default # Fit the baseline model ``KernelRidgeCV`` baseline = KernelRidgeCV(kernel="linear", alphas=alphas) baseline.fit(X_train, Y_train) .. raw:: html
KernelRidgeCV(alphas=array([1.00000000e-10, 3.16227766e-10, 1.00000000e-09, 3.16227766e-09,
           1.00000000e-08, 3.16227766e-08, 1.00000000e-07, 3.16227766e-07,
           1.00000000e-06, 3.16227766e-06, 1.00000000e-05, 3.16227766e-05,
           1.00000000e-04, 3.16227766e-04, 1.00000000e-03, 3.16227766e-03,
           1.00000000e-02, 3.16227766e-02, 1.00000000e-01, 3.16227766e-01,
           1.00000000e+00, 3.16227766e+00, 1.00000000e+01, 3.16227766e+01,
           1.00000000e+02, 3.16227766e+02, 1.00000000e+03, 3.16227766e+03,
           1.00000000e+04, 3.16227766e+04, 1.00000000e+05, 3.16227766e+05,
           1.00000000e+06, 3.16227766e+06, 1.00000000e+07, 3.16227766e+07,
           1.00000000e+08, 3.16227766e+08, 1.00000000e+09, 3.16227766e+09,
           1.00000000e+10]))
Please rerun this cell to show the HTML repr or trust the notebook.


.. GENERATED FROM PYTHON SOURCE LINES 190-191 Compute scores of all models .. GENERATED FROM PYTHON SOURCE LINES 191-200 .. code-block:: default scores_1 = pipe_1.score(X_test, Y_test) scores_1 = backend.to_numpy(scores_1) scores_2 = pipe_2.score(X_test, Y_test) scores_2 = backend.to_numpy(scores_2) scores_baseline = baseline.score(X_test, Y_test) scores_baseline = backend.to_numpy(scores_baseline) .. GENERATED FROM PYTHON SOURCE LINES 201-202 Plot histograms .. GENERATED FROM PYTHON SOURCE LINES 202-213 .. code-block:: default bins = np.linspace(0, 1, 50) plt.hist(scores_baseline, bins, alpha=0.7, label="KernelRidgeCV") plt.hist(scores_1, bins, alpha=0.7, label="MultipleKernelRidgeCV(solver='random_search')") plt.hist(scores_2, bins, alpha=0.7, label="MultipleKernelRidgeCV(solver='hyper_gradient')") plt.xlabel(r"$R^2$ generalization score") plt.title("Histogram over targets") plt.legend() plt.show() .. image:: /_auto_examples/multiple_kernel_ridge/images/sphx_glr_plot_mkr_2_solvers_003.png :alt: Histogram over targets :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 214-218 Generate trajectories --------------------- Refit the second model with different number of iterations, just to plot the trajectories. .. GENERATED FROM PYTHON SOURCE LINES 218-232 .. code-block:: default all_kernel_weights_2 = [ np.full((n_targets, n_kernels), fill_value=1. / n_kernels), ] max_iter = model_2.solver_params["max_iter"] for n_iter in np.unique(np.int_(np.logspace(0, np.log10(max_iter), 3))): # change the number of iteration and refit from scratch pipe_2[1].solver_params['max_iter'] = n_iter pipe_2.fit(X_train, Y_train) kernel_weights_2 = np.exp(backend.to_numpy(pipe_2[1].deltas_.T)) kernel_weights_2 /= kernel_weights_2.sum(1)[:, None] all_kernel_weights_2.append(kernel_weights_2) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [ ] 0% | 0.00 sec | hypergradient_direct | [ ] 0% | 0.00 sec | hypergradient_direct | [........................................] 100% | 0.16 sec | hypergradient_direct | [ ] 0% | 0.00 sec | hypergradient_direct | [ ] 0% | 0.00 sec | hypergradient_direct | [........ ] 20% | 0.09 sec | hypergradient_direct | [................ ] 40% | 0.10 sec | hypergradient_direct | [........................ ] 60% | 0.11 sec | hypergradient_direct | [................................ ] 80% | 0.12 sec | hypergradient_direct | [........................................] 100% | 0.21 sec | hypergradient_direct | [ ] 0% | 0.00 sec | hypergradient_direct | [ ] 0% | 0.00 sec | hypergradient_direct | [. ] 3% | 0.09 sec | hypergradient_direct | [.. ] 7% | 0.10 sec | hypergradient_direct | [.... ] 10% | 0.11 sec | hypergradient_direct | [..... ] 14% | 0.12 sec | hypergradient_direct | [...... ] 17% | 0.13 sec | hypergradient_direct | [........ ] 21% | 0.14 sec | hypergradient_direct | [......... ] 24% | 0.15 sec | hypergradient_direct | [........... ] 28% | 0.17 sec | hypergradient_direct | [............ ] 31% | 0.18 sec | hypergradient_direct | [............. ] 34% | 0.19 sec | hypergradient_direct | [............... ] 38% | 0.20 sec | hypergradient_direct | [................ ] 41% | 0.21 sec | hypergradient_direct | [................. ] 45% | 0.22 sec | hypergradient_direct | [................... ] 48% | 0.23 sec | hypergradient_direct | [.................... ] 52% | 0.24 sec | hypergradient_direct | [...................... ] 55% | 0.25 sec | hypergradient_direct | [....................... ] 59% | 0.27 sec | hypergradient_direct | [........................ ] 62% | 0.28 sec | hypergradient_direct | [.......................... ] 66% | 0.29 sec | hypergradient_direct | [........................... ] 69% | 0.30 sec | hypergradient_direct | [............................ ] 72% | 0.31 sec | hypergradient_direct | [.............................. ] 76% | 0.32 sec | hypergradient_direct | [............................... ] 79% | 0.33 sec | hypergradient_direct | [................................. ] 83% | 0.34 sec | hypergradient_direct | [.................................. ] 86% | 0.36 sec | hypergradient_direct | [................................... ] 90% | 0.37 sec | hypergradient_direct | [..................................... ] 93% | 0.38 sec | hypergradient_direct | [...................................... ] 97% | 0.39 sec | hypergradient_direct | [........................................] 100% | 0.48 sec | hypergradient_direct | .. GENERATED FROM PYTHON SOURCE LINES 233-234 Get the normalized kernel weights for the first model .. GENERATED FROM PYTHON SOURCE LINES 234-237 .. code-block:: default kernel_weights_1 = np.exp(backend.to_numpy(pipe_1[1].deltas_.T)) kernel_weights_1 /= kernel_weights_1.sum(1)[:, None] .. GENERATED FROM PYTHON SOURCE LINES 238-249 Plot on the simplex ------------------- Finally, we visualize the obtained kernel weights vector, projected on the simplex. The simplex is the space of positive weights that sum to one, and it has a triangular shape in dimension 3. We plot on three different panels: - the kernel weights used in the simulated data - the kernel weights sampled during random search, and the best ones - the kernel weights trajectories obtained during hyper-gradient descent .. GENERATED FROM PYTHON SOURCE LINES 249-322 .. code-block:: default def _create_simplex_projection_and_edges(ax): """Create a projection on the 3D simplex, and plot edges.""" n_kernels = 3 if ax is None: ax = plt.gca() # create a projection in 2D from sklearn.decomposition import PCA kernel_weights = generate_dirichlet_samples(10000, n_kernels, concentration=[1.], random_state=0) pca = PCA(2).fit(backend.to_numpy(kernel_weights)) # add simplex edges edges = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0]]) edges = pca.transform(edges).T # add tripod at origin tripod_length = 0.15 tripod = np.array([[0, 0, 0], [tripod_length, 0, 0], [0, 0, 0], [0, tripod_length, 0], [0, 0, 0], [0, 0, tripod_length]]) tripod = pca.transform(tripod).T # add point legend points = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) labels = points.copy() points = pca.transform(points * 1.15).T for (xx, yy), label in zip(points.T, labels): ax.text(xx, yy, str(label), horizontalalignment='center', verticalalignment='center') if ax is None: plt.figure(figsize=(8, 8)) ax = plt.gca() ax.plot(edges[0], edges[1], c='gray') ax.plot(tripod[0], tripod[1], c='gray') ax.axis('equal') ax.axis('off') return ax, pca def plot_simplex(X, ax=None, **kwargs): """Plot a set of points in the 3D simplex.""" ax, pca = _create_simplex_projection_and_edges(ax=ax) Xt = pca.transform(X).T ax.scatter(Xt[0], Xt[1], **kwargs) ax.legend() return ax def plot_simplex_trajectory(Xs, ax=None): """Plot a series of trajectory in the 3D simplex.""" ax, pca = _create_simplex_projection_and_edges(ax=ax) trajectories = [] for Xi in Xs: Xt = pca.transform(Xi).T trajectories.append(Xt) trajectories = np.array(trajectories) for trajectory in trajectories.T: ax.plot(trajectory[0], trajectory[1], linewidth=1, color="C0", zorder=1) ax.scatter(trajectory[0, -1], trajectory[1, -1], color="C1", zorder=2) return ax .. GENERATED FROM PYTHON SOURCE LINES 323-352 .. code-block:: default fig, axs = plt.subplots(1, 3, figsize=(12, 4)) # selection of targets selection = slice(0, 50) # First panel ax = axs[0] ax.set_title("(a) Ground truth", y=0) plot_simplex(kernel_weights[selection], ax=ax, color='C2', label="true weights") # Second panel ax = axs[1] ax.set_title("(b) Random search", y=0) plot_simplex(backend.to_numpy(kernel_weights_sampled), ax=ax, marker='+', label="random candidates", zorder=10) plot_simplex(kernel_weights_1[selection], ax=axs[1], label="selected candidates") # Third panel ax = axs[2] ax.set_title("(c) Gradient descent", y=0) plot_simplex_trajectory([aa[selection] for aa in all_kernel_weights_2], ax=ax) ax.legend([ax.lines[2], ax.collections[0]], ['gradient trajectory', 'final point']) plt.tight_layout() # fig.savefig('simulation.pdf', dpi=150, bbox_inches='tight', pad_inches=0) plt.show() .. image:: /_auto_examples/multiple_kernel_ridge/images/sphx_glr_plot_mkr_2_solvers_004.png :alt: (a) Ground truth, (b) Random search, (c) Gradient descent :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 4.563 seconds) .. _sphx_glr_download__auto_examples_multiple_kernel_ridge_plot_mkr_2_solvers.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_mkr_2_solvers.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_mkr_2_solvers.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_